基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展
竞霞, 邹琴, 白宗璠, 黄文江

Research progress of crop diseases monitoring based on reflectance and chlorophyll fluorescence data
JING Xia, ZOU Qin, BAI Zong-Fan, HUANG Wen-Jiang
表2 作物病害遥感监测算法
Table 2 Remote sensing monitoring algorithm for crop diseases
模型
Model
作物病害种类
Type of crop diseases
算法
Algorithm
文献
Reference
统计模型
Statistical model
小麦白粉病
Wheat powdery mildew
相关分析、方差分析
Correlation analysis and variance analysis
[41]
小麦条锈病
Wheat stripe rust
线性回归、非线性回归
Linear regression and nonlinear regression
[42]
小麦白粉病
Wheat powdery mildew
Logistic回归
Logistic regression
[43]
番茄叶斑病
Tomato bacterial spot
偏最小二乘回归、多元逐步回归
Partial least squares regression and multiple stepwise regression
[44]
小麦条锈病
Wheat stripe rust
偏最小二乘法
Partial least squares
[9]
人工智能模型
Artificial
intelligence model
水稻颖枯病、曲霉病
Rice glume blight disease and false smut disease
主成分分析
Principal component analysis
[31]
黄瓜花叶病毒
Cucumber mosaic virus
人工神经网络
Artificial neural network
[45]
小麦白粉病
Wheat powdery mildew
Fisher线性判别分析、AdaBoost和支持向量机
Fisher linear discriminant analysis, support vector machine, and AdaBoost model
[46]
大豆枯萎病
Soybean sudden death syndrome
偏最小二乘判别分析
Partial least squares discriminant analysis
[47]
油棕茎腐病
Oil palm basal stem rot
决策树、随机森林和支持向量机
Decision tree, random forest, and support vector machine
[48]
小麦白粉病
Wheat powdery mildew
随机森林
Random forest
[49]
蚕豆病虫害
Broad bean disease and pests
聚类算法
K-Means and the FCM clustering
[50]