基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展
竞霞, 邹琴, 白宗璠, 黄文江

Research progress of crop diseases monitoring based on reflectance and chlorophyll fluorescence data
JING Xia, ZOU Qin, BAI Zong-Fan, HUANG Wen-Jiang
表4 单波段和全波段SIF的提取算法
Table 4 SIF extraction algorithm for single spectrum and full spectrum
反演算法
Retrieval algorithms
Fraunhofer线内外反射率和荧光关系
The relationship of reflectance and SIF between the internal and external Fraunhofer dark line respectively
参考文献
Reference
单波段
Single spectrum
FLD r(λout) = r(λin), F(λout) = F(λin) [102]
3FLD r(λin) = r(λleftωleft+r(λrightωright, F(λout) = F(λin) [103]
iFLD r(λout) = αR r(λin), F(λout) = αFF(λin) [104]
SFM r(λ) = f(rλ), F(λ) = f(Fλ) [106]
pFLD $\ddot{R}(\lambda )=\sum\limits_{i=1}^{n}{{{k}_{i}}{{\phi }_{i}}(\lambda )} $ [105]
全波段
Full spectrum
SFM r(λ) = S(rλ), F(λ) = V(Fλ) [107]
FSR F(λ) ≈ b0+b1∙(λ-λ0)+b2∙(λ-λ0)², r(λ) ≈ b3+b4∙(λ-λ0)+b5∙(λ-λ0 [108]
F-SFM $r(\lambda )=\sum\limits_{i}^{m}{{{k}_{i}}{{\varphi }_{i}}}(\lambda )$., $F(\lambda)=\sum_{i}^{n} j_{i} {\phi }_{i}(\lambda)$ [109]