基于高光谱的水稻叶片氮含量估计的深度森林模型研究
李金敏, 陈秀青, 杨琦, 史良胜

Deep learning models for estimation of paddy rice leaf nitrogen concentration based on canopy hyperspectral data
LI Jin-Min, CHEN Xiu-Qing, YANG Qi, SHI Liang-Sheng
表4 随机森林和支持向量机对水稻叶片含氮量估算效果分析
Table 4 Results of model performance analysis by random forest and support vector machine (SVM)
回归模型
Regression model
光谱波段
Band
范围
Range (nm)
建模集
Calibration set
预测集
Prediction set
R2cRMSEcR2pRMSEp
随机森林
Random forest
全波段Full-wave band350-25000.9820.1490.8910.378
可见光波段Visible waveband400-7600.9760.1710.8040.507
近红外波段Near-infrared waveband760-25000.9800.1560.8900.380
支持向量机
SVM
全波段Full-wave band350-25000.9600.2230.7250.601
可见光波段Visible waveband400-7600.8430.4400.7550.568
近红外波段Near-infrared waveband760-25000.9360.2810.6970.631