| 基于高光谱的水稻叶片氮含量估计的深度森林模型研究
 | 
		
		| 李金敏, 陈秀青, 杨琦, 史良胜 | 
			
			| Deep learning models for estimation of paddy rice leaf nitrogen concentration based on canopy hyperspectral data
 | 
		
		| LI Jin-Min, CHEN Xiu-Qing, YANG Qi, SHI Liang-Sheng | 
	
		|  | 
	
		| 表4 随机森林和支持向量机对水稻叶片含氮量估算效果分析 
 | 
	
		| Table 4 Results of model performance analysis by random forest and support vector machine (SVM) 
 | 
	
		|  | 
	
		| | 回归模型 Regression model
 | 光谱波段 Band
 | 范围 Range (nm)
 | 建模集 Calibration set
 | 预测集 Prediction set
 | 
|---|
 | R2c | RMSEc | R2p | RMSEp | 
|---|
 | 随机森林 Random forest
 | 全波段Full-wave band | 350-2500 | 0.982 | 0.149 | 0.891 | 0.378 |  | 可见光波段Visible waveband | 400-760 | 0.976 | 0.171 | 0.804 | 0.507 |  | 近红外波段Near-infrared waveband | 760-2500 | 0.980 | 0.156 | 0.890 | 0.380 |  | 支持向量机 SVM
 | 全波段Full-wave band | 350-2500 | 0.960 | 0.223 | 0.725 | 0.601 |  | 可见光波段Visible waveband | 400-760 | 0.843 | 0.440 | 0.755 | 0.568 |  | 近红外波段Near-infrared waveband | 760-2500 | 0.936 | 0.281 | 0.697 | 0.631 | 
 | 
	
		|  | 
	
		|  |