基于高光谱的水稻叶片氮含量估计的深度森林模型研究
|
李金敏, 陈秀青, 杨琦, 史良胜
|
Deep learning models for estimation of paddy rice leaf nitrogen concentration based on canopy hyperspectral data
|
LI Jin-Min, CHEN Xiu-Qing, YANG Qi, SHI Liang-Sheng
|
|
表5 2种深度学习模型对水稻叶片含氮量估算效果分析
|
Table 5 Model performance analysis by two deep learning models
|
|
回归模型 Regression model | 光谱波段 Band | 范围 Range (nm) | 建模集 Calibration set | 预测集 Prediction set |
---|
R2c | RMSEc | R2p | RMSEp |
---|
多层感知器 Multi-layer perceptron | 全波段Full-wave band | 350-2500 | 0.937 | 0.282 | 0.872 | 0.392 | 可见光波段Visible waveband | 400-760 | 0.876 | 0.397 | 0.858 | 0.412 | 近红外波段Near-infrared waveband | 760-2500 | 0.932 | 0.293 | 0.860 | 0.408 | 深度森林 Deep forest | 全波段Full-wave band | 350-2500 | 0.981 | 0.151 | 0.919 | 0.327 | 可见光波段Visible waveband | 400-760 | 0.978 | 0.165 | 0.903 | 0.358 | 近红外波段Near-infrared waveband | 760-2500 | 0.979 | 0.162 | 0.917 | 0.330 |
|
|
|