欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (11): 3052-3064.doi: 10.3724/SP.J.1006.2025.54022

• 耕作栽培·生理生化 • 上一篇    下一篇

基于产量反应和农学效率的棉花智能化推荐施肥方法研究

哈丽哈什·依巴提1,张炎1,*,李青军1,徐新朋2,何萍2   

  1. 1 新疆维吾尔自治区农业科学院农业资源与环境研究所 / 农业农村部荒漠绿洲作物生理生态与耕作重点实验室, 新疆乌鲁木齐830091; 2 中国农业科学院农业资源与农业区划研究所, 北京100081
  • 收稿日期:2025-02-13 修回日期:2025-08-13 接受日期:2025-08-13 出版日期:2025-11-12 网络出版日期:2025-08-25
  • 基金资助:
    本研究由国家农业科技项目“农田智慧施肥项目” (20221805), 国家重点研发计划项目(2016YFD0200101)和农业农村部荒漠绿洲作物生理生态与耕作重点实验室开放课题项目(25107020-202104)资助。

Study on smart fertilizer recommendation methods based on yield response and agronomic efficiency for cotton

Halihashi Yibati1,Zhang Yan1,*,Li Qing-Jun1,Xu Xin-Peng2,He Ping2   

  1. 1 Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences / Key Laboratory of Desert Oasis Crop Physiology, Ecology and Cultivation, Ministry of Agriculture and Rural Affairs, Urumqi 830091, Xinjiang, China; 2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2025-02-13 Revised:2025-08-13 Accepted:2025-08-13 Published:2025-11-12 Published online:2025-08-25
  • Supported by:
    This study was supported by the National Agricultural Science and Technology Project “Smart Fertilization Project” (20221805), the National Key Research and Development Program (2016YFD0200101) and the Open Project of the Key Laboratory of Crop Physiology, Ecology, and Tillage in Desert Oasis, Ministry of Agriculture and Rural Affairs (25107020-202104).

摘要:

针对新疆棉花生产中缺乏先进高效的推荐施肥方法和不合理施肥带来的肥料利用率低的现状,本研究1996—2019年新疆主要植棉区21个植棉县的414个棉花田间肥料试验为基础,建立养分管理数据库采用QUEFTS模型模拟棉花最佳养分需求量,并分析土壤基础养分供应、肥料的农学效率与产量反应之间的相关关系,在此基础上构建施肥模型,并开发了适用于新疆棉花生产的养分专家系统为验证该系统的应用效果,2017—2021年在新疆主要棉花种植区开展田间验证试验。试验共设6个施肥处理,分别为棉花养分专家系统推荐施肥(NE),基于NE推荐施肥基础上的不施氮肥、不施磷肥和不施钾肥农民习惯施肥(FP)当地的优化推荐施肥(ST),调查了棉花产量、肥料利用效率和经济效益。QUEFTS模型模拟棉花养分吸收结果表明,每生产1 t籽棉地上部所需氮、磷和钾养分分别为27.76.229.3 kg。施用氮、磷和钾肥的平均产量反应分别16241096804 kg hm?2平均相对产量分别为0.7、0.8和0.8,平均农学效率分别为6.88.516.7 kg kg?1田间验证结果显示,与FP处理相比,NE处理分别减施氮、磷、钾肥40.7%60.1%10.7%;与ST处理相比,NE处理分别减施氮、磷肥30.3%38.0%,增施钾肥10.8%FPST相比NE处理的棉花产量分别增加了36592 kg hm?2,经济效益分别增加了4302hm?21094 hm?2氮、磷和钾肥回收率分别提高了18.8和11.8、14.2和11.5、13.4和6.0个百分点氮和磷肥农学效率分别增加了3.5 kg kg?12.2 kg kg?17.2 kg kg?14.4 kg kg?1,钾肥农学效率分别减少了1.6 kg kg?10.6 kg kg?1。综上所述,基于产量反应和农学效率构建的智能化新疆棉花养分专家系统,能够为每块地提供个性化的施肥方案。连续多点的田间试验结果充分证明,该方法优化了肥料用量与养分配比,提高了棉花产量和肥料利用率,增加了经济效益,是适用于新疆棉花生产的推荐施肥方法。

关键词: 棉花, QUEFTS模型, 养分专家系统, 产量, 农学效率, 肥料利用率

Abstract:

To address the low fertilizer use efficiency resulting from the lack of advanced fertilization recommendations and the widespread practice of improper fertilization in Xinjiang’s cotton production, this study established a large-scale nutrient management database based on 414 field fertilizer trials conducted from 1996 to 2019 across 21 major cotton-producing counties. The QUEFTS model was employed to simulate optimal nutrient requirements for cotton and to evaluate the relationships among indigenous soil nutrient supply, fertilizer agronomic efficiency, and crop yield response. Based on these analyses, a quantitative fertilization model was developed, and a field-specific Nutrient Expert (NE) decision support system was designed to suit the conditions of cotton production in Xinjiang. To validate the NE system, field experiments were conducted between 2017 and 2021 in major cotton-growing regions. Each experiment included six fertilization treatments: NE-recommended fertilization (NE); nitrogen (N), phosphorus (P), and potassium (K) omission treatments based on NE; farmer's practice (FP); and locally optimized soil test-based fertilization (ST). Data were collected on cotton yield, fertilizer use efficiency, and economic returns. Model simulations indicated that producing 1 ton of seed cotton requires 27.7 kg N, 6.2 kg P, and 29.3 kg K in above-ground biomass. The average yield responses to N, P2O5, and K2O applications were 1624, 1096, and 804 kg hm?2, respectively; corresponding relative yields were 0.7, 0.8, and 0.8; and agronomic efficiencies were 6.8, 8.5, and 16.7 kg kg?1, respectively. Field experiment results showed that the NE treatment applied 40.7%, 60.1%, and 10.7% less N, P, and K fertilizer, respectively, compared to FP, and 30.3% less N and 38.0% less P compared to ST. Compared to FP and ST, the NE treatment increased cotton yield by 365 and 92 kg ha?1, respectively, and improved economic returns by 4302 and 1094 yuan hm?2. The recovery efficiencies of N, P, and K fertilizers under NE also improved by 18.8 and 11.8, 14.2 and 11.5, and 13.4 and 6.0 percentage points, respectively. Furthermore, the agronomic efficiencies of N and P increased by 3.5 and 2.2 kg kg?1, and 7.2 and 4.4 kg kg?1, respectively. In contrast, the agronomic efficiency of K under NE decreased by 1.6 and 0.6 kg kg?1 compared to FP and ST, respectively. In conclusion, the intelligent, field-specific Nutrient Expert system developed based on yield response and agronomic efficiency offers a tailored fertilization strategy for individual plots. Multi-year, multi-location field experiments demonstrated that this approach optimizes nutrient input and balance, enhances cotton yield and fertilizer use efficiency, and improves economic returns. Therefore, the NE system represents an advanced and practical fertilization strategy for sustainable cotton production in Xinjiang.

Key words: cotton, QUEFTS model, Nutrient Expert system, yield, agronomic efficiency, fertilizer use efficiency

[1] Yibati H, Zhang Y, Li Q J, Xu X P, He P. Estimation of cotton nutrient uptake based on the QUEFTS model in Xinjiang. Agronomy, 2022, 12: 1427. 

[2] Wu W, Ma B L. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: a review. Sci Total Environ, 2015, 512/513: 415–427. 

[3] Zhang F S, Chen X P, Vitousek P. An experiment for the world. Nature, 2013, 497: 3335.

[4] 张福锁. 测土配方施肥技术. 北京: 中国农业大学出版社, 2011.

Zhang F S. Soil Testing and Fertilization Recommendation. Beijing: China Agricultural University Press, 2011 (in Chinese). 

[5] 危常州, 候振安, 雷咏雯, 朱和明, 张福锁, 鲍柏杨, 郭琛, 王桂花. 不同地理尺度下综合施肥模型的建模与验证. 植物营养与肥料学报, 2005, 11: 13–20.

Wei C Z, Hou Z A, Lei Y W, Zhu H M, Zhang F S, Bao B Y, Guo C, Wang G H. Modeling and validation of transfer model covering different geographical scale. Plant Nutr Fert Sci, 2005, 11: 13–20 (in Chinese with English abstract).

[6] Sherene T, Santhi R, Kavimani R, Bharathi Kumar K. Integrated fertilizer prescriptions for transgenic cotton hybrids under rainfed situation through inductive cum targeted yield model on vertisol. Commun Soil Sci Plant Anal, 2016, 47: 1951–1960. 

[7] Shadrach F D, Kandasamy G, Neelakandan S, Lingaiah T B. Optimal transfer learning based nutrient deficiency classification model in ridge gourd (Luffa acutangula). Sci Rep, 2023, 13: 14108. 

[8] 彭懿, 杨国江, 国秀丽, 王晓凤, EREL Ran, 冯固. 基于输入-输出平衡的施磷方法可实现作物高产和磷肥高效––以新疆水肥一体化棉花体系为例. 土壤学报, 2023, 60: 1480–1492.
Peng Y, Yang G J, Guo X L, Wang X F, EREL R, Feng G. Input-output balance-based P fertilization approach for achieving target crop yield and high P use efficiency: a case study of cotton (Gossypium hirsutum L.) with mulched fertigation. Acta Pedol Sin, 2023, 60: 1480–1492 (in Chinese with English abstract).

[9] 何萍, 金继运, Mirasol F.Pampolino, Adrian M.Johnston. 基于作物产量反应和农学效率的推荐施肥方法. 植物营养与肥料学报, 2012, 18: 499–505.
He P, Jin J Y, Pampolino M, Johnston A. Approach and decision support system based on crop yield response and agronomic efficiency. Plant Nutr Fert Sci, 2012, 18: 499–505 (in Chinese with English abstract).

[10] Janssen B H, Guiking F C T, van der Eijk D, Smaling E M A, Wolf J, van Reuler H. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma, 1990, 46: 299–318.

[11] 何萍, 徐新朋, 丁文成, 周卫. 基于作物产量反应和农学效率的智能化推荐施肥原理与实践. 植物营养与肥料学报, 2023, 29: 1181–1189.
He P, Xu X P, Ding W C, Zhou W. Principles and practices of intelligent fertilizer recommendation based on yield response and agronomic efficiency. J Plant Nutr Fert, 2023, 29: 1181–1189 (in Chinese with English abstract).

[12] Dobermann A, Witt C, Dawe D, Abdulrachman S, Gines H C, Nagarajan R, Satawathananont S, Son T T, Tan P S, Wang G H, et al. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Res, 2002, 74: 37–66.

[13] Dobermann A, Witt C, Abdulrachman S, Gines H C, Nagarajan R, Son T T, Tan P S, Wang G H, Chien N V, Thoa V T K, et al. Estimating indigenous nutrient supplies for site-specific nutrient management in irrigated rice. Agron J, 2003, 95: 924–935.

[14] Chuan L M, He P, Pampolino M F, Johnston A M, Jin J Y, Xu X P, Zhao S C, Qiu S J, Zhou W. Establishing a scientific basis for fertilizer recommendations for wheat in China: yield response and agronomic efficiency. Field Crops Res, 2013, 140: 1–8.

[15] Witt C, Dobermann A, Abdulrachman S, Gines H C, Wang G H, Nagarajan R, Satawatananont S, Son T T, Tan P S, Van Tiem L, et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Res, 1999, 63: 113–138.

[16] Pushpalatha R, Byju G. QUEFTS model, a tool for site-specific nutrient management of crops: a review. Commun Soil Sci Plant Anal, 2022, 53: 2339–2352. 

[17] Xu X P, He P, Yang F Q, Ma J C, Pampolino M F, Johnston A M, Zhou W. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for rice in China. Field Crops Res, 2017, 206: 33–42.

[18] Schut A G T, Giller K E. Soil-based, field-specific fertilizer recommendations are a pipe-dream. Geoderma, 2020, 380: 114680.

[19] 辛承松, 董合忠. 滨海盐碱地棉花施肥的原理与技术. 中国棉花, 2012, 39(2): 6–11.
Xin C S, Dong H Z. Principle and technology for cotton fertilization in coastal saline soils. China Cotton, 2012, 39(2): 6–11 (in Chinese with English abstract).

[20] 李鹏程, 董合林, 王润珍, 刘爱忠, 刘爱珍, 李如义. 不同早、中熟基因型棉花品种的干物质积累及养分吸收规律研究. 中国土壤与肥料, 2012, (2): 23–26.
Li P C, Dong H L, Wang R Z, Liu A Z, Liu A Z, Li R Y. Study on the rule of dry matter accumulation and nutrient absorption of different earliness and medium maturing genotypes cultivars of upland cotton. Soil Fert Sci China, 2012, (2): 23–26 (in Chinese with English abstract).

[21] 郭仁松, 魏红国, 富艳荣, 张巨松, 田立文, 林涛. 南疆超高产棉花干物质积累分配与养分吸收运移特征的研究. 新疆农业科学, 2011, 48: 410–418.
Guo R S, Wei H G, Fu Y R, Zhang J S, Tian L W, Lin T. Study on dry matter accumulate or distribution and nutrient absorption or transfer of super high-yield cotton in south Xinjiang. Xinjiang Agric Sci, 2011, 48: 410–418 (in Chinese with English abstract). 

[22] 张学昕, 刘淑英, 王平, 周丽萍. 不同氮磷钾配施对棉花干物质积累、养分吸收及产量的影响. 西北农业学报, 2012, 21(8): 107–113.
Zhang X X, Liu S Y, Wang P, Zhou L P. Effects of different fertilizations on cotton dry matter accumulation, nutrients uptake and yield. Acta Agric Boreali-Occident Sin, 2012, 21(8): 107–113 (in Chinese with English abstract).

[23] 周桂生, 翟富燕, 陆世渊, NIMIR A E, 徐庆龙. 低密高氮条件下留叶枝对棉花产量和养分吸收的影响. 扬州大学学报(农业与生命科学版), 2013, 34(4): 50–55.
Zhou G S, Zhai F Y, Lu S Y, Nimir A E, Xu Q L. Effects of vegetative branch retention on seed cotton yield and nutrient absorption under low planting densities and high nitrogen applying rates. J Yangzhou Univ (Agric Life Sci Edn), 2013, 34(4): 50–55 (in Chinese with English abstract).

[24] Alderman P D. A comprehensive R interface for the DSSAT cropping systems model. Comput Electron Agric, 2020, 172: 105325. 

[25] Keating B A, Carberry P S, Hammer G L, Probert M E, Robertson M J, Holzworth D, Huth N I, Hargreaves J N G, Meinke H, Hochman Z, et al. An overview of APSIM, a model designed for farming systems simulation. Eur J Agron, 2003, 18: 267–288. 

[26] Black C A. Soil Fertility Evaluation and Control. New York: CRC Press, 2013. pp 342–392.

[27] Karlen D L, Kovar J L, Cambardella C A, Colvin T S. Thirty-year tillage effects on crop yield and soil fertility indicators. Soil Tillage Res, 2013, 130: 24–41. 

[28] Slattery R A, Ainsworth E A, Ort D R. A meta-analysis of responses of canopy photosynthetic conversion efficiency to environmental factors reveals major causes of yield gap. J Exp Bot, 2013, 64: 3723–3733. 

[29] Pearce A W, Slaton N A, Lyons S E, Bolster C H, Bruulsema T W, Grove J H, Jones J D, McGrath J M, Miguez F E, Nelson N O, et al. Defining relative yield for soil test correlation and calibration trials in the Fertilizer Recommendation Support Tool. Soil Sci Soc Am J, 2022, 86: 1338–1353. 

[30] Antille D L, Moody P W. Nitrogen use efficiency indicators for the Australian cotton, grains, sugar, dairy and horticulture industries. Environ Sustain Indic, 2021, 10: 100099.

[31] 梁涛, 陈轩敬, 赵亚南, 黄兴成, 李鸿, 石孝均, 张跃强. 四川盆地水稻产量对基础地力与施肥的响应. 中国农业科学, 2015, 48: 47594768.
Liang T, Chen X J, Zhao Y N, Huang X C, Li H, Shi X J, Zhang Y Q. Response of rice yield to inherent soil productivity of paddies and fertilization in Sichuan basin. Sci Agric Sin, 2015, 48: 4759–4768 (in Chinese with English abstract).

[32] 马伟栋, 陈英花, 王飞, 危常州. 新疆耕地土壤氮磷钾养分供应量分析. 新疆农业科学, 2022, 59: 1401–1408.
Ma W D, Chen Y H, Wang F, Wei C Z. Study on the supply of nitrogen, phosphorus and potassium nutrients of arable land in Xinjiang. Xinjiang Agric Sci, 2022, 59: 1401–1408 (in Chinese with English abstract).

[33] 汤明尧, 沈重阳, 张炎, 闫翠侠, 傅国海. 新疆棉花化肥利用效率研究. 中国土壤与肥料, 2022, (4): 161–168.
Tang M Y, Shen Z Y, Zhang Y, Yan C X, Fu G H. Investigation of fertilizer use efficiency for cotton in Xinjiang. Soil Fert Sci China, 2022, (4): 161–168 (in Chinese with English abstract).

[34] 吕宁, 祝宏辉, 程文明. 农业化肥减量及生物肥料替代可行性研究——来自新疆棉区调查数据的实证. 地理研究, 2022, 41: 1459–1480.
Lyu N, Zhu H H, Cheng W M. Feasibility study on reduction of agricultural chemical fertilizer and substitution of bio-fertilizer: An empirical study of cotton survey data in Xinjiang. Geogr Res, 2022, 41: 1459–1480 (in Chinese with English abstract).

[35] 李继福, 何俊峰, 陈佛文, 谭京红, 吴启侠, 万鹏. 中国棉花生产格局与施肥研究现状: 基于CNKI数据计量分析. 中国棉花, 2019, 46(4): 17–24.
Li J F, He J F, Chen F W, Tan J H, Wu Q X, Wan P. Status of cotton planting and fertilization research in China: based on CNKI data analysis. China Cotton, 2019, 46(4): 17–24 (in Chinese with English abstract).

[36] Luo H H, Wang Q, Zhang J K, Wang L S, Li Y B, Yang G Z. Minimum fertilization at the appearance of the first flower benefits cotton nutrient utilization of nitrogen, phosphorus and potassium. Sci Rep, 2020, 10: 6815.

[37] 朱倩倩, 武雪萍, 张淑香, 许咏梅, 吉丽丽. 化肥减量有机替代对新疆滴灌棉花产量及土壤养分的影响. 新疆农业科学, 2020, 57: 2135–2143.
Zhu Q Q, Wu X P, Zhang S X, Xu Y M, Ji L L. Effects of reducing chemical fertilizer and organic fertilizer supplement on the yield and soil nutrient of drip irrigation cotton in Xinjiang. Xinjiang Agric Sci, 2020, 57: 2135–2143.

[38] Marimuthu S, Surendran U, Subbian P. Productivity, nutrient uptake and post-harvest soil fertility as influenced by cotton-based cropping system with integrated nutrient management practices in semi-arid tropics. Arch Agron Soil Sci, 2014, 60: 87–101. 

[39] Wang X S, Deng Z, Zhang W Z, Meng Z J, Chang X, Lyu M C. Effect of waterlogging duration at different growth stages on the growth, yield and quality of cotton. PLoS One, 2017, 12: e0169029.

[40] Dong H Z, Li W J, Eneji A E, Zhang D M. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Res, 2012, 126: 137–144. 

[41] Luo Z, Liu H, Li W P, Zhao Q, Dai J L, Tian L W, Dong H Z. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res, 2018, 218: 150–157.

[42] 赵欢, 张萌, 刘海, 肖厚军, 秦松, 崔宏浩, 郑常祥, 祝云芳. 新型肥料对贵州黄壤区玉米干物质积累、养分吸收及氮素利用率的影响. 西南农业学报, 2017, 30: 1390–1395.

Zhao H, Zhang M, Liu H, Xiao H J, Qin S, Cui H H, Zheng C X, Zhu Y F. Effects of different new Fertilizers on dry matter accumulation, nutrient absorption and nitrogen use efficiency of corn planted on yellow soil in Guizhou. Southwest China J Agric Sci, 2017, 30: 1390–1395 (in Chinese with English abstract).

[43] Tang H Y, Yang G Z, Zhang X L, Siddique K. Improvement of fertilizer N recovery by allocating more N for later application in cotton (Gossypium hirsutum L.). Int J Basic Appl Sci, 2014, 12: 32–37.

[44] Yang G Z, Chu K Y, Tang H Y, Nie Y C, Zhang X L. Fertilizer 15N accumulation, recovery and distribution in cotton plant as affected by N rate and split. J Integr Agric, 2013, 12: 999–1007.

[45] Huo W G, Peng Y, Maimaitiaili B, Batchelor W D, Feng G. Phosphorus fertilizer recommendation based on minimum soil surplus for cotton growing in salt-affected soils. Field Crops Res, 2023, 291: 108799.

[46] Hussain M, Tariq A F, Nawaz A, Nawaz M, Sattar A, Ul-Allah S, Wakeel A. Efficacy of fertilizing method for different potash sources in cotton (Gossypium hirsutum L.) nutrition under arid climatic conditions. PLoS One, 2020, 15: e0228335.

[47] 夏颖, 姜存仓, 陈防, 鲁剑巍, 李小坤, 郝艳淑. 棉花钾营养与钾肥施用的研究进展. 华中农业大学学报, 2010, 29: 658–663.
Xia Y, Jiang C C, Chen F, Lu J W, Li X K, Hao Y S. Review on potassium nutrient and potassium fertilizer application of cotton. J Huazhong Agric Univ, 2010, 29: 658–663 (in Chinese with English abstract).

[48] 李书田, 邢素丽, 张炎, 崔荣宗. 钾肥用量和施用时期对棉花产量品质和棉田钾素平衡的影响. 植物营养与肥料学报, 2016, 22: 111121.
Li S T, Xing S L, Zhang Y, Cui R Z. Effects of potassium fertilizer application rate and timing on cotton yield, quality, and potassium balance in cotton fields. Plant Nutr Fert Sci, 2016, 22: 111–121 (in Chinese with English abstract).

[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 郭保卫, 王旺, 王开, 王岩, 曾鑫, 景秀, 王晶, 倪新华, 许轲, 张洪程. 长江中下游两类型糯稻高产群体动态特征及超高产形成规律[J]. 作物学报, 2025, 51(9): 2433-2453.
[3] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[4] 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500.
[5] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[6] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[7] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[8] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[9] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[10] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[11] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[12] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[13] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[14] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[15] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .