作物学报 ›› 2025, Vol. 51 ›› Issue (11): 3052-3064.doi: 10.3724/SP.J.1006.2025.54022
哈丽哈什·依巴提1,张炎1,*,李青军1,徐新朋2,何萍2
Halihashi Yibati1,Zhang Yan1,*,Li Qing-Jun1,Xu Xin-Peng2,He Ping2
摘要:
针对新疆棉花生产中缺乏先进高效的推荐施肥方法和不合理施肥带来的肥料利用率低的现状,本研究以1996—2019年新疆主要植棉区21个植棉县的414个棉花田间肥料试验为基础,建立养分管理大数据库。采用QUEFTS模型模拟棉花最佳养分需求量,并分析土壤基础养分供应、肥料的农学效率与产量反应之间的相关关系,在此基础上构建施肥模型,并开发了适用于新疆棉花生产的养分专家系统。为验证该系统的应用效果,于2017—2021年在新疆主要棉花种植区开展田间验证试验。试验共设6个施肥处理,分别为棉花养分专家系统推荐施肥(NE),基于NE推荐施肥基础上的不施氮肥、不施磷肥和不施钾肥,农民习惯施肥(FP)和当地的优化推荐施肥(ST),调查了棉花产量、肥料利用效率和经济效益。QUEFTS模型模拟棉花养分吸收结果表明,每生产1 t籽棉地上部所需氮、磷和钾养分分别为27.7、6.2和29.3 kg。施用氮、磷和钾肥的平均产量反应分别为1624、1096和804 kg hm?2,平均相对产量分别为0.7、0.8和0.8,平均农学效率分别为6.8、8.5和16.7 kg kg?1。田间验证结果显示,与FP处理相比,NE处理分别减施氮、磷、钾肥40.7%、60.1%和10.7%;与ST处理相比,NE处理分别减施氮、磷肥30.3%和38.0%,增施钾肥10.8%。与FP和ST相比,NE处理的棉花产量分别增加了365和92 kg hm?2,经济效益分别增加了4302元 hm?2和1094元 hm?2,氮、磷和钾肥回收率分别提高了18.8和11.8、14.2和11.5、13.4和6.0个百分点,氮和磷肥农学效率分别增加了3.5 kg kg?1和2.2 kg kg?1、7.2 kg kg?1和4.4 kg kg?1,钾肥农学效率分别减少了1.6 kg kg?1和0.6 kg kg?1。综上所述,基于产量反应和农学效率构建的智能化新疆棉花养分专家系统,能够为每块地提供个性化的施肥方案。连续多点的田间试验结果充分证明,该方法优化了肥料用量与养分配比,提高了棉花产量和肥料利用率,增加了经济效益,是适用于新疆棉花生产的推荐施肥新方法。
| [1] Yibati H, Zhang Y, Li Q J, Xu X P, He P. Estimation of cotton nutrient uptake based on the QUEFTS model in Xinjiang. Agronomy, 2022, 12: 1427. [2] Wu W, Ma B L. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: a review. Sci Total Environ, 2015, 512/513: 415–427. [3] Zhang F S, Chen X P, Vitousek P. An experiment for the world. Nature, 2013, 497: 33–35. [4] 张福锁. 测土配方施肥技术. 北京: 中国农业大学出版社, 2011. Zhang F S. Soil Testing and Fertilization Recommendation. Beijing: China Agricultural University Press, 2011 (in Chinese). [5] 危常州, 候振安, 雷咏雯, 朱和明, 张福锁, 鲍柏杨, 郭琛, 王桂花. 不同地理尺度下综合施肥模型的建模与验证. 植物营养与肥料学报, 2005, 11: 13–20. Wei C Z, Hou Z A, Lei Y W, Zhu H M, Zhang F S, Bao B Y, Guo C, Wang G H. Modeling and validation of transfer model covering different geographical scale. Plant Nutr Fert Sci, 2005, 11: 13–20 (in Chinese with English abstract). [6] Sherene T, Santhi R, Kavimani R, Bharathi Kumar K. Integrated fertilizer prescriptions for transgenic cotton hybrids under rainfed situation through inductive cum targeted yield model on vertisol. Commun Soil Sci Plant Anal, 2016, 47: 1951–1960. [7] Shadrach F D, Kandasamy G, Neelakandan S, Lingaiah T B. Optimal transfer learning based nutrient deficiency classification model in ridge gourd (Luffa acutangula). Sci Rep, 2023, 13: 14108.
[8] 彭懿, 杨国江, 国秀丽, 王晓凤, EREL Ran, 冯固. 基于输入-输出平衡的施磷方法可实现作物高产和磷肥高效––以新疆水肥一体化棉花体系为例. 土壤学报, 2023, 60: 1480–1492.
[9] 何萍, 金继运, Mirasol F.Pampolino, Adrian M.Johnston. 基于作物产量反应和农学效率的推荐施肥方法. 植物营养与肥料学报, 2012, 18: 499–505. [10] Janssen B H, Guiking F C T, van der Eijk D, Smaling E M A, Wolf J, van Reuler H. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma, 1990, 46: 299–318.
[11] 何萍, 徐新朋, 丁文成, 周卫. 基于作物产量反应和农学效率的智能化推荐施肥原理与实践. 植物营养与肥料学报, 2023, 29: 1181–1189. [12] Dobermann A, Witt C, Dawe D, Abdulrachman S, Gines H C, Nagarajan R, Satawathananont S, Son T T, Tan P S, Wang G H, et al. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Res, 2002, 74: 37–66. [13] Dobermann A, Witt C, Abdulrachman S, Gines H C, Nagarajan R, Son T T, Tan P S, Wang G H, Chien N V, Thoa V T K, et al. Estimating indigenous nutrient supplies for site-specific nutrient management in irrigated rice. Agron J, 2003, 95: 924–935. [14] Chuan L M, He P, Pampolino M F, Johnston A M, Jin J Y, Xu X P, Zhao S C, Qiu S J, Zhou W. Establishing a scientific basis for fertilizer recommendations for wheat in China: yield response and agronomic efficiency. Field Crops Res, 2013, 140: 1–8. [15] Witt C, Dobermann A, Abdulrachman S, Gines H C, Wang G H, Nagarajan R, Satawatananont S, Son T T, Tan P S, Van Tiem L, et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Res, 1999, 63: 113–138. [16] Pushpalatha R, Byju G. QUEFTS model, a tool for site-specific nutrient management of crops: a review. Commun Soil Sci Plant Anal, 2022, 53: 2339–2352. [17] Xu X P, He P, Yang F Q, Ma J C, Pampolino M F, Johnston A M, Zhou W. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for rice in China. Field Crops Res, 2017, 206: 33–42. [18] Schut A G T, Giller K E. Soil-based, field-specific fertilizer recommendations are a pipe-dream. Geoderma, 2020, 380: 114680.
[19] 辛承松, 董合忠. 滨海盐碱地棉花施肥的原理与技术. 中国棉花, 2012, 39(2): 6–11.
[20] 李鹏程, 董合林, 王润珍, 刘爱忠, 刘爱珍, 李如义. 不同早、中熟基因型棉花品种的干物质积累及养分吸收规律研究. 中国土壤与肥料, 2012, (2): 23–26.
[21] 郭仁松, 魏红国, 富艳荣, 张巨松, 田立文, 林涛. 南疆超高产棉花干物质积累分配与养分吸收运移特征的研究. 新疆农业科学, 2011, 48: 410–418.
[22] 张学昕, 刘淑英, 王平, 周丽萍. 不同氮磷钾配施对棉花干物质积累、养分吸收及产量的影响. 西北农业学报, 2012, 21(8): 107–113.
[23] 周桂生, 翟富燕, 陆世渊, NIMIR A E, 徐庆龙. 低密高氮条件下留叶枝对棉花产量和养分吸收的影响. 扬州大学学报(农业与生命科学版), 2013, 34(4): 50–55. [24] Alderman P D. A comprehensive R interface for the DSSAT cropping systems model. Comput Electron Agric, 2020, 172: 105325. [25] Keating B A, Carberry P S, Hammer G L, Probert M E, Robertson M J, Holzworth D, Huth N I, Hargreaves J N G, Meinke H, Hochman Z, et al. An overview of APSIM, a model designed for farming systems simulation. Eur J Agron, 2003, 18: 267–288. [26] Black C A. Soil Fertility Evaluation and Control. New York: CRC Press, 2013. pp 342–392. [27] Karlen D L, Kovar J L, Cambardella C A, Colvin T S. Thirty-year tillage effects on crop yield and soil fertility indicators. Soil Tillage Res, 2013, 130: 24–41. [28] Slattery R A, Ainsworth E A, Ort D R. A meta-analysis of responses of canopy photosynthetic conversion efficiency to environmental factors reveals major causes of yield gap. J Exp Bot, 2013, 64: 3723–3733. [29] Pearce A W, Slaton N A, Lyons S E, Bolster C H, Bruulsema T W, Grove J H, Jones J D, McGrath J M, Miguez F E, Nelson N O, et al. Defining relative yield for soil test correlation and calibration trials in the Fertilizer Recommendation Support Tool. Soil Sci Soc Am J, 2022, 86: 1338–1353. [30] Antille D L, Moody P W. Nitrogen use efficiency indicators for the Australian cotton, grains, sugar, dairy and horticulture industries. Environ Sustain Indic, 2021, 10: 100099.
[31] 梁涛, 陈轩敬, 赵亚南, 黄兴成, 李鸿, 石孝均, 张跃强. 四川盆地水稻产量对基础地力与施肥的响应. 中国农业科学, 2015, 48: 4759–4768.
[32] 马伟栋, 陈英花, 王飞, 危常州. 新疆耕地土壤氮磷钾养分供应量分析. 新疆农业科学, 2022, 59: 1401–1408.
[33] 汤明尧, 沈重阳, 张炎, 闫翠侠, 傅国海. 新疆棉花化肥利用效率研究. 中国土壤与肥料, 2022, (4): 161–168.
[34] 吕宁, 祝宏辉, 程文明. 农业化肥减量及生物肥料替代可行性研究——来自新疆棉区调查数据的实证. 地理研究, 2022, 41: 1459–1480.
[35] 李继福, 何俊峰, 陈佛文, 谭京红, 吴启侠, 万鹏. 中国棉花生产格局与施肥研究现状: 基于CNKI数据计量分析. 中国棉花, 2019, 46(4): 17–24. [36] Luo H H, Wang Q, Zhang J K, Wang L S, Li Y B, Yang G Z. Minimum fertilization at the appearance of the first flower benefits cotton nutrient utilization of nitrogen, phosphorus and potassium. Sci Rep, 2020, 10: 6815.
[37] 朱倩倩, 武雪萍, 张淑香, 许咏梅, 吉丽丽. 化肥减量有机替代对新疆滴灌棉花产量及土壤养分的影响. 新疆农业科学, 2020, 57: 2135–2143. [38] Marimuthu S, Surendran U, Subbian P. Productivity, nutrient uptake and post-harvest soil fertility as influenced by cotton-based cropping system with integrated nutrient management practices in semi-arid tropics. Arch Agron Soil Sci, 2014, 60: 87–101. [39] Wang X S, Deng Z, Zhang W Z, Meng Z J, Chang X, Lyu M C. Effect of waterlogging duration at different growth stages on the growth, yield and quality of cotton. PLoS One, 2017, 12: e0169029. [40] Dong H Z, Li W J, Eneji A E, Zhang D M. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Res, 2012, 126: 137–144. [41] Luo Z, Liu H, Li W P, Zhao Q, Dai J L, Tian L W, Dong H Z. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res, 2018, 218: 150–157. [42] 赵欢, 张萌, 刘海, 肖厚军, 秦松, 崔宏浩, 郑常祥, 祝云芳. 新型肥料对贵州黄壤区玉米干物质积累、养分吸收及氮素利用率的影响. 西南农业学报, 2017, 30: 1390–1395. Zhao H, Zhang M, Liu H, Xiao H J, Qin S, Cui H H, Zheng C X, Zhu Y F. Effects of different new Fertilizers on dry matter accumulation, nutrient absorption and nitrogen use efficiency of corn planted on yellow soil in Guizhou. Southwest China J Agric Sci, 2017, 30: 1390–1395 (in Chinese with English abstract). [43] Tang H Y, Yang G Z, Zhang X L, Siddique K. Improvement of fertilizer N recovery by allocating more N for later application in cotton (Gossypium hirsutum L.). Int J Basic Appl Sci, 2014, 12: 32–37. [44] Yang G Z, Chu K Y, Tang H Y, Nie Y C, Zhang X L. Fertilizer 15N accumulation, recovery and distribution in cotton plant as affected by N rate and split. J Integr Agric, 2013, 12: 999–1007. [45] Huo W G, Peng Y, Maimaitiaili B, Batchelor W D, Feng G. Phosphorus fertilizer recommendation based on minimum soil surplus for cotton growing in salt-affected soils. Field Crops Res, 2023, 291: 108799. [46] Hussain M, Tariq A F, Nawaz A, Nawaz M, Sattar A, Ul-Allah S, Wakeel A. Efficacy of fertilizing method for different potash sources in cotton (Gossypium hirsutum L.) nutrition under arid climatic conditions. PLoS One, 2020, 15: e0228335.
[47] 夏颖, 姜存仓, 陈防, 鲁剑巍, 李小坤, 郝艳淑. 棉花钾营养与钾肥施用的研究进展. 华中农业大学学报, 2010, 29: 658–663.
[48] 李书田, 邢素丽, 张炎, 崔荣宗. 钾肥用量和施用时期对棉花产量品质和棉田钾素平衡的影响. 植物营养与肥料学报, 2016, 22: 111–121. |
| [1] | 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526. |
| [2] | 郭保卫, 王旺, 王开, 王岩, 曾鑫, 景秀, 王晶, 倪新华, 许轲, 张洪程. 长江中下游两类型糯稻高产群体动态特征及超高产形成规律[J]. 作物学报, 2025, 51(9): 2433-2453. |
| [3] | 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513. |
| [4] | 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500. |
| [5] | 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219. |
| [6] | 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151. |
| [7] | 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163. |
| [8] | 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138. |
| [9] | 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849. |
| [10] | 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913. |
| [11] | 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900. |
| [12] | 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886. |
| [13] | 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826. |
| [14] | 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933. |
| [15] | 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860. |
|