[1]陈温福, 徐正进. 水稻超高产育种理论与方法. 北京: 科学出版社, 2007. pp 1–16
Chen W F, Xu Z J. The Theories and Methods of Rice for Maximum Yield. Beijing: Science Press, 2007. pp 1–16 (in Chinese)
[2]徐正进, 林晗, 马殿荣, 王嘉宇, 徐海, 赵明辉, 陈温福. 北方粳稻穗型改良理论与技术研究及应用. 沈阳农业大学学报, 2012, 43: 650–659
Xu Z J, Lin H, Ma D R, Wang J Y, Xu H, Zhao M H, Chen W F. Research and application of the panicle type improved theory and technology in northern japonica rice. J Shenyang Agric Univ, 2012, 43: 650–659 (in Chinese with English abstract)
[3]Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701–702
[4]JiaoY Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541–544
[5]Kotaro M, Mayuko I, Atsushi M, Song X J, Midori I, Kenji A, Makoto M, Hidemi K, Motoyuki A. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genet, 2010, 42: 545–549
[6]Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice. Nature, 2003, 422: 618–621
[7]Qi J, Qian Q, Bu Q Y, Li S Y, Chen Q, Sun J Q, Liang W X, ZhouY H, Chu C C, Li X G, Ren F G, Palme K, Zhao B R, Chen J F, Chen M S, Li C Y. Mutation of rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol, 2008, 147: 1947–1959
[8]Gao Z Y, Qian Q, Liu X H, Yan M X, Feng Q, Dong G J, Liu J, Han B. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant . Plant Mol Biol, 2009, 71: 265–276
[9]Tomotsugu A, Mikihisa U, Shinji I, Atsushi H, Masahiko M, Shinjiro Y, Junko K. D14, a Strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol, 2009, 50: 1416–1424
[10]Liu W Z, Wu C, Fu Y P, Hu G C, Si H M, Zhu L, Luan W J, He Z Q, Sun Z X. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta, 2009, 230: 649–658
[11]Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Nitzan S, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Kotomi U, Shinsaku I, Tadao A, Cheng Z J, Wang J, Lei C L, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCFD3-dependent degradation of D53 regulates strigolactone signaling. Nature, 2013, 504: 406–410
[12]Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Karsten M, Qian Q, Eric X, Wang Y H, Li J Y. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504: 401–405
[13]韩龙植, 魏兴华. 水稻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 66–73
Han Z L, Wei X H. Rice Germplasm Description Specifications and Data Standards. Beijing: China Agriculture Press, 2006. pp 66–73
[14]Lu B R, Cai X X, Jin X. Efficient indica and japonica rice identification based on the InDel molecular method: Its implication in rice breeding and evolutionary research. Prog Nat Sci, 2009, 19: 1241–1252
[15]Zhao X Q, Wu W R. Construction of a genetic map based on ILP markers in rice. Hereditas (Beijing), 2008, 30: 225–230
[16]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E. Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181
[17]Wang J K, Li H H, Zhang L Y, Li C H,Meng L. QTL ICI Mapping V3.0. Beijing, China: Institute of Crop Science of Chinese Academy of Agricultural Sciences, 2011. http://www.isbreeding.net/
[18]Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78
[19]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13
[20]李仕贵, 何平, 王玉平, 黎汉云, 周开达, 陈英, 朱立煌. 水稻剑叶性状的遗传分析和基因定位. 作物学报, 2000, 26: 261–265
Li S G, He P, Wang Y P, Li H Y, Zhou K D, Chen Y, Zhu L H. Genetic analysis and gene mapping of the leaf traits in rice (Oryza sativa L.). Acta Agron Sin, 2000, 26: 261–265 (in Chinese with English abstract)
[21]岳兵, 薛为亚, 罗利军, 邢永忠. 水稻剑叶部分形态生理特性QTL分析以及它们与产量、产量性状的关系. 遗传学报, 2006, 33: 824-832
Yue B, Xue W Y, Luo L J, Xing Y Z. QTL Analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. J Genet Genomics, 2006, 33: 824–832 (in Chinese with English abstract)
[22]徐建军, 赵强, 赵元凤, 朱磊, 徐辰武, 顾铭洪, 韩斌, 梁国华. 利用重测序的水稻染色体片段代换系群体定位剑叶形态QTL. 中国水稻科学, 2011, 25: 483–487
Xu J J, Zhao Q, Zhao Y F, Zhu L, Xu C W, Gu M H, Han B, Liang G H. Mapping of QTLs for flag leaf shape using whole-genome re-sequenced chromosome segment substitution lines in rice. Chin J Rice Sci, 2011, 25: 483–487 (in Chinese with English abstract)
[23]王一平, 曾建平, 郭龙彪, 邢永忠, 徐才国, 梅捍卫, 应存山, 罗利军. 水稻顶部三叶与穗重的关系及其QTL分析. 中国水稻科学, 2005, 19: 13–20
Wang Y P, Zeng J P, Guo L B, Xing Y Z, Xu G C, Mei H W, Ying C S, Luo L J. QTL and correlation analysis on characters of top three leaves and panicle weight in rice (Oryza sativa L.). Chin J Rice Sci, 2005, 19: 13–20 (in Chinese with English abstract)
[24]彭茂民, 杨国华, 张菁晶, 安保光, 李阳生. 不同遗传背景下水稻剑叶形态性状的QTL分析. 中国水稻科学, 2007, 21: 247–252
Peng M M, Yang G H, Zhang J J, An B G, Li Y S. QTL Analysis for flag leaf morphological traits in rice (Oryza sativa L.) under different genetic backgrounds. Chin J Rice Sci, 2007, 21: 247–252 (in Chinese with English abstract)
[25]姜树坤, 张喜娟, 黄成, 邢亚南, 郑旭, 徐正进, 陈温福. 基于粳稻F2和F2:6群体的连锁图谱及剑叶性状QTL比较分析. 中国水稻科学, 2010, 24: 372–378
Jiang S K, Zhang X J, Huang C, Xing Y N, Zheng X, Xu Z J, Chen W F. Comparison of genetic linkage map and QTLs controlling flag leaf traits based on F2 and F2:6 populations derived from japonica rice. Chin J Rice Sci, 2010, 24: 372–378 (in Chinese with English abstract)
[26]刘进, 姚晓云, 李清, 张宇, 任春元, 王嘉宇, 徐正进. 水稻叶片性状QTL分析. 华北农学报, 2012, 27(5): 86–90
Liu J, Yao X Y, Li Q, Zhang Y, Ren C Y, Wang J Y, Xu Z J. QTL Analysis for the leaf traits in rice. Acta Agric Boreali-Sin, 2012, 27(5): 86–90 (in Chinese with English abstract)
[27]Hittalmani S, Shashidhar H E, Bagali P G, Huang N, Sidhu J S, Singh V P, Khush G S. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica, 2002, 125: 207–214
[28]方萍, 季天委, 陶勤南, 吴平. 两种供氮水平下水稻穗长QTLs的检测. 中国水稻科学, 2002, 16: 176–178
Fang P, Ji T W, Tao Q N, Wu P. Detecting QTLs for rice panicle length under two nitrogen levels. Chin J Rice Sci, 2002, 16: 176–178 (in Chinese with English abstract)
[29]杜景红, 樊叶杨, 王磊, 庄杰云. 应用剩余杂合体衍生的近等基因系分解水稻产量性状QTL. 中国水稻科学, 2008, 22: 1–7
Du J H, Fan Y Y, Wang L, Zhuang J Y. Dissection of QTLs for yield traits by using near isogenic lines derived from residual heterozygous lines in rice. Chin J Rice Sci, 2008, 22: 1–7 (in Chinese with English abstract)
[30]Yan C J, Zhou J H, Yan S, Chen F, Yeboah M, Tang S Z, Liang G H, Gu M H. Identification and characterization o f a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet, 2007, 115: 1093–1100
[31]Wang J Y, Nakazaki T, Chen S Q, Chen W F, Saito H, Tsukiyama T, Okumoto Y, Xu Z J, Tanisaka T. Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theor Appl Genet, 2009, 119: 85–91
[32]Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494–497 |