Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (06): 965-972.doi: 10.3724/SP.J.1006.2014.00965

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development of Molecular Markers and Map Integration for Seed Color Traits in Dahuang Rape (Brassica rapa L.)

ZHAO Hui-Yan,XIAO Lu,ZHAO Zhi,DU De-Zhi*   

  1. Institute of Spring Rapeseed, Qinghai Academy of Agriculture and Forestry Sciences / Key Laboratory of Qinghai Province for Spring Rapeseed Genetic Improvement / National Key Laboratory Breeding Base of Qinghai Province for Innovation and Utilization of Plateau Crop Germplasm, Xining 810016, China
  • Received:2013-08-21 Revised:2014-03-04 Online:2014-06-12 Published:2014-04-09
  • Contact: 杜德志, E-mail: qhurape@126.com, Tel: 0971-5366520

Abstract:

 A BC4 population and a F2 population, derived from the cross between Dahuang and 09A-126 (brown seed, B. rapa), were constructed. AFLP (amplified fragment length polymorphism) methodology and bulked segregant analysis (BSA) were used to get five AFLP markers closely linked to yellow-seeded gene Brsc1, termed Y11–Y15 respectively. Five AFLP specific fragments were homologue with some sequences on chromosome A09 of Brassica rapa, which we converted into five SCAR markers, termed SC11–SC15. Seven SSR markers, BrID10607, KS10760, B089L03-3, A1–A4, tightly linked to Brsc1 were developed in the region of chromosome where Brsc1 was located. With five SCAR markers and seven SSR markers used for genotyping in F2 population, SC14 and A1 were confirmed as co-dominant markers. Using BC4 population, Brsc1 was located in the region of 1.7 Mb between Y06 and A04 on chromosome A9 with genetic distances of 0.115 cM and 0.98 cM. Y05 and Y12 co-segregated with Brsc1. The results were useful for developing yellow-seeded rapeseed lines by marker-assisted selection (MAS), and also laying the foundation for fine mapping and map-based cloning of Brsc1.

Key words: Brassica rapa L., Yellow seed, Molecular marker, Genetic map, Physical map

[1]刘后利. 油菜遗传育种学, 北京: 中国农业大学出版社, 2000. pp 215–225



Liu H L. Rapeseed Genetics and Breeding. Beijing: Chinese Agricultural University Press, 2000. pp 215–225 (in Chinese)



[2]Stringam G R, McGregor D I, Pawlowski S H. Chemical and morphological characteristics associated with seed coat color in rapeseed. In: Proceedings of the 4th International Rapeseed Congress, Giessen, Germany. 1974: 99–108



[3]Shirzadegan M, Röbbelen G. Influence of seed color and hull proportion on quality properties of seeds in Brassica napus L. Fette Seifen Anstrichm, 1985, 87: 235–237



[4]Simbaya J, Slominski B A, Rakow G, Campbell L D, Downey R K, Bell J M. Quality characteristics of yellow-seeded Brassica seed meals: protein, carbohydrate, and dietary fiber components. J Agric Food Chem, 1995, 43: 2062–2066



[5]Mohammad A, Irka S M, Aziz M A. Inheritance of seed color in some Brassica oleiferous. Ind J Genet Breed, 1942, 2: 112–127



[6]Jönsson R. Yellow-seeded rape and turnip rape: II. Breeding for improved quality of oil and meal in yellow-seeded materials. J Swed Seed Assoc, 1975, 85: 271–275



[7]Stringam G R. Inheritance of Seed Color in Turnip Rape. Can J Plant Sci, 1980, 60: 331–335



[8]Zaman M W. Inheritance of seed colour in Brassica campestris. Plant Genet Breed, 1989, 99: 205–207



[9]Rahman M H. Inheritance of petal colour and its independent segregation from seed colour in Brassica rapa. Plant Breed, 2001, 120: 197–200



[10]Ahmed S U, Zuberi M I. Inheritance of seed coat color in Brassica campestris L. variety Toria. Crop Sci, 1971, 11: 309–310



[11]Hawk J A. Single gene control of seed color and hypocotyl color in turnip rape. Can J Plant Sci, 1982, 62: 331–334



[12]Chen B Y, Heneen W K. Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L. Euphytica, 1992, 59: 157–163



[13]Schwetka A. Inheritance of seed colour in turnip rape (Brassica campestris L.). Theor Appl Genet, 1982, 62: 161–169



[14]Teutonico R A, Osborn T C. Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor Appl Genet, 1994, 89: 885–894



[15]Chen B Y, Jørgensen R B, Cheng B F, Heneen W K. Identification and chromosomal assignment of RAPD markers linked with a gene for seed colour in a Brassica Campestris-Alboglabra addition line. Hereditas, 1997, 126: 133–138



[16]Rahman M, McVetty P B E, Li G. Development of SRAP, SNP and Multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor Appl Genet, 2007, 115: 1101–1107



[17]罗玉秀, 杜德志. 青海大黄油菜主要农艺性状研究. 西北农业学报, 2007, 16: 136–139



Luo Y X, Du D Z. Research on desirable traits of Qinghai Dahuang(Brassica rapa L.). J Northwest Agric, 2007, 16: 136–139 (in Chinese with English abstract)



[18]Xiao L, Zhao Z, Du D Z, Yao Y M, Xu L, Tang G Y. Genetic characterization and fine mapping of a yellow-seeded gene in Dahuang (Brassica rapa landrace). Theor Appl Genet, 2012, 124: 903–909



[19]Doyle J J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11–15



[20]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[21]Vos P, Hogers R, Bleeker M, van De Lee T, Hornes M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 1995, 23: 4407–4414



[22] 陆光远. 甘蓝型油菜显性核不育基因和抑制基因的图谱定位. 华中农业大学博士论文, 2003. pp 38–39



Lu G Y. Mapping of Dominant Genic Male Sterility Gene (Ms) and Inhibitor Gene (Rf) in Brassica napus L. PhD Disseratation of Huazhong Agricultural University, 2003. pp 38–39 (in Chinese with English abstract)



[23]易斌. 甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆. 华中农业大学博士论文, 2007. pp 38–39



Yi B. Fine mapping and map-based cloning of recessive genic male sterility gene in Barssica napus. PhD Disseratation of Huazhong Agricultural University, 2007. pp 33–34 (in Chinese with English abstract)



[24]Cheng F, Liu S, Wu J, Fang L, Sun S L, Liu B, Li P X, Hua W, Wang X W. BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol, 2011, 11: 136



[25]Wang X W, Wang H Z, Wang J, Sun R F, Wu J, Liu S Y, Bai Y Q, Mun J H, Bancroft L, Cheng F, Huang S W, Li X X, Hua W,   Wang J Y, Wang X Y, Freeling M, Pires C J, Paterson A, Boulos C, Wang B. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011, 43: 1035–1039



[26]Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new  generation of protein database search programs. Nucl Acids Res, 1997, 25: 3389–3402



[27]李霞. 人工合成甘蓝型黄籽油菜粒色基因的精细定位. 华中农业大学硕士学位论文, 2009. p 21



Li X. Fine mapping of seed color gene in the resynthesized yellow-seed Barssica napus. MS Thesis of Huazhong Agricultural University, Wuhan, China, 2009. p 21 (in Chinese with English abstract)



[28]Cheng X M, Xu J S, Xia S, Gu J X, Yang Y, Fu J, Qian X J, Zhang S C, Wu J S, Liu K D. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet, 2009, 118: 1121–1131



[29]Kosambi D D. The estimation of map distances from recombination values. Ann Human Genet, 1943: 172–175



[30]Lincoln S, Daly M, Lander E. Mapping genetic mapping with MAPMAKER/EXP3.0. Cambridge: Whitehead Institute Technical Report, 1992



[31]刘仁虎, 孟金陵. MapDraw在Excel中绘制遗传连锁图的宏. 遗传, 2003, 25: 317–321



Liu R H, Meng J L. MapDraw: the macros for drawing genetic linkage map in Excel. Genetics(Beijing), 2003, 25: 317–321 (in Chinese with English abstract)



[32]Li X, Chen L, Hong M Y, Zhang Y, Zu F, Wen J, Yi B, Ma C Z, Shen J X, Tu J X, Fu T D. A Large Insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PloS One, 2012, 7: e44145



[33]Kebede B, Cheema K, Greenshields D L, Li C X, Selvaraj G, Rahman H. Construction of genetic linkage map and mapping of QTL for seed color in Brassica rapa. Genome, 2012, 55: 813–823



[34]Shirley B W, Kubasek W L, Storz G, Bruggemann E, Koornneef M, Ausubel F M, Goodman H M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J, 1995, 8: 659–671



[35]Sagasser M, Lu G H, Hahlbrock K, Weisshaar B. A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes & Dev, 2002, 16: 138–149



[36]刘忠松, 王卓, 刘显军, 谭勇俊, 陆赢, 官春云. 油菜A9染色体的标记、基因和结构变异. 中国科技论文在线, http://www.paper.edu.cn/index.php/default/releasepaper/content/201203-55. 2012



Liu Z S, Wang Z, Liu X J, Tan Y J, Lu Y, Guan C Y. DNA Markers, Arabidopsis Orthologous Genes and Structural Variation on A9 chromosome of rapa. Sciencepaper Online, http://www.paper.edu.cn/index.php/default/releasepaper/content/201203-55. 2012 (in Chinese with English abstract)



[37]Zhang J F, Lu Y, Yuan Y X, Zhang X W, Geng J F, Chen Y, Cloutier S, Peter B E M, Li G Y. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol, 2009, 69: 553–563



[38]Chai Y R, Lei B, Huang H L, Huang H L, Li J N, Yin J M, Tang Z L, Wang R, Chen Li. TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genom, 2009, 281: 109–123



[39]Yan M L, Liu X J, Guan C Y, Liu L L, Lu Y, Liu Z S. Cloning and SNP Analysis of TT1 Gene in Brassica juncea. Acta Agron Sin, 2010, 36: 1634–1641



[40]Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005, 111: 1514–152

[1] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[2] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[3] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[4] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[5] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
[6] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[7] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[8] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[9] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[10] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[11] JIANG Shu-Kun,WANG Li-Zhi,YANG Xian-Li,LI Bo,MU Wei-Jie,DONG Shi-Chen,CHE Wei-Cai,LI Zhong-Jie,CHI Li-Yong,LI Ming-Xian,ZHANG Xi-Juan,JIANG Hui,LI Rui,ZHAO Qian,LI Wen-Hua. Detection of QTLs controlling cold tolerance at bud bursting stage by using a high-density SNP linkage map in japonica rice [J]. Acta Agronomica Sinica, 2020, 46(8): 1174-1184.
[12] ZENG Xin-Ying,GUO Jian-Bin,ZHAO Jiao-Jiao,CHEN Wei-Gang,QIU Xi-Ke,HUANG Li,LUO Huai-Yong,ZHOU Xiao-Jing,JIANG Hui-Fang,HUANG Jia-Quan. Identification of QTL related to seed size in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2019, 45(8): 1200-1207.
[13] Ping ZHANG,Yi-Mei JIANG,Peng-Hui CAO,Fu-Lin ZHANG,Hong-Ming WU,Meng-Ying CAI,Shi-Jia LIU,Yun-Lu TIAN,Ling JIANG,Jian-Min WAN. Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability [J]. Acta Agronomica Sinica, 2019, 45(3): 335-343.
[14] XU Yi,ZHANG Lie-Mei,GUO Yan-Chun,QI Jian-Min,ZHANG Li-Lan,FANG Ping-Ping,ZHANG Li-Wu. Core collection screening of a germplasm population in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2019, 45(11): 1672-1681.
[15] YANG Yong,LU Yan,GUO Shu-Qing,SHI Zhong-Hui,ZHAO Jie,FAN Xiao-Lei,LI Qian-Feng,LIU Qiao-Quan,ZHANG Chang-Quan. Improvement of rice eating quality and physicochemical properties by introgression of Wx in allele in indica varieties [J]. Acta Agronomica Sinica, 2019, 45(11): 1628-1637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!