Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (02): 255-264.doi: 10.3724/SP.J.1006.2016.00255

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of 1,2,4-Trichlorobenzene on Photosynthetic Characteristics of Flag Leaf during Grain Filling Stage and Grain Yield of Two Rice Cultivars

LI Yu1,CHEN Lu1,YAN Kai1,SUN Ying1,YIN Yi-Fan1,DING Xiu-Wen1,DAI Qi-Gen1,2,*,ZHANG Hong-Cheng1, 2   

  1. 1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 2 Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture, Yangzhou 225009, China
  • Received:2015-05-22 Revised:2015-11-20 Online:2016-02-12 Published:2015-12-07
  • Contact: 戴其根, E-mail: qgdai@yzu.edu.cn, Tel: 13701442683 E-mail:yuli102805@126.com
  • Supported by:

    This study was support by the National Natural Science Foundation of China (31271639) and the Special Fund for Agro-scientific Research in the Public Interest (201303102).

Abstract:

A pot experiment was conducted, using two rice cultivars Ningjing 1 (TCB sensitive) and Yangfujing 8 (TCB tolerant), with five concentration treatments (0, 10, 20, 40, and 80 mg TCB per kg dry soil) to explore the responses of two rice cultivars to TCB, and provide the basis for the high, stable, and safe production of rice. The results indicated that significant differences were found in the effects of TCB treatments on grain yield and photosynthetic parameters of flag leaf between the two cultivars. Plant height, fresh weight, and yield were significantly increased, chlorophyll content, net photosynthetic rate, intercellular CO2 concentration, transpiration rate, and qn were slightly increased, while Fv/Fm and Fv/Fo were slightly decreased in the low TCB concentration (10 mg kg-1) treatment of Yangfujing 8. Under the same condition, the net photosynthetic rate, CO2 intercellular concentration, transpiration rate, ΦPSII, Fv/Fm, Fv/Fo, qp, yield in Ningjing 1 were slightly declined with significant reduction of stomatal conductance. The photosynthetic characteristics, yield, plant height, fresh weight in Ningjing 1 were decreased significantly, while Yangfujing 8 showed more resistance and adaptation to TCB at 20 mg kg-1. Both cultivars showed significant decrease in growth, photosynthesis and yield in treatments with high TCB concentrations (40 and 80 mg kg-1), with the greater decrements in Ningjing 1. The effect of TCB on photosynthetic characteristics and yield of rice was not only related to TCB concentration, but also to cultivars. Low TCB levels slightly promoted the plant height, fresh weight, chlorophyll content, photosynthetic characteristics and rice yield in Yangfujing 8 that showed stronger tolerance to TCB than Ningjing 1, under high TCB concentrations (40 and 80 mg kg-1). 

Key words: Rice, Grain-filling stage, 1,2,4-three chlorobenzene, Cultivars, Photosynthetic characteristics, Yield

[1] 宋玉芳, 周启星, 许华夏, 任丽萍, 宋雪英, 龚平. 菲、芘、1,2,4-三氯苯对土壤高等植物根伸长抑制的生态毒性效应. 生态学报, 2002, 21: 1945–1950



Song Y F, Zhou Q X, XU H X, Ren L P, Song X Y, Gong P. Evolution characteristics of grain yield and plant type for mid season indica rice cultivars. Acta Ecol Sin, 2002, 21:1945–1950 (in Chinese with English abstract)



[2] Diaz J, Rendueles M, Diaz M. 1,2,4-trichlorobenzene flow characteristics in saturated homogeneous and stratified porous media. Water Air Soil Pollut, 2006, 177: 3–17



[3] 周文敏, 傅德黔, 孙宗光. 水中优先控制污染物黑名单. 中国环境监测, 1990, 6(4): 1–3



Zhou W M, Fu D Q, Sun Z G. Determination of black list of China’s priority pollutants in water. Res Environ Sci, 1990, 6(4): 1–3 (in Chinese with English abstract)



[4] Wang M J, Jones K C. Analysis of chlorobenzenes in sewage sludge by capillary gas chromatography. Chemosphere, 1991, 23: 677–691



[5] Rogers H R, Campbell J A, Crathorne B, Dobbs A J. The occurrence of chlorobenzenes and permethrins in twelve U. K. sewage sludges. Water Res, 1989, 23(7): 913–921



[6] Wild S R, Jones K C. Organic chemicals entering agricultural soils in sewage sludges: screening for their potential to transfer to crop plants and livestock. Sci Total Environ, 1992, 119: 85–119



[7] Wang M J, Jones K C. Behavior and fate of chlorobenzenes in spiked and sewage sludge-amended soil. Environ Sci Technol, 1994, 28: 1843–1852



[8] 莫测辉, 蔡全英, 吴启堂, 李桂荣, 王伯光, 田凯. 城市污泥中有机污染物的研究进展. 农业环境保护, 2001, 20: 273–276



Mo C H, Cai Q Y, Wu Q T, Li G R, Wang B G, Tian K. Research advances on organic pollutants in municipal sludge. Agric Environ Prot, 2001, 20: 273–276 (in Chinese with English abstract)



[9] 张丽珊, 于殿臣, 刘海玲, 姚家彪, 朱岩, 尹昭华, 姜萍, 可夫. 慢速渗滤土地处理系统对沈阳西部城市污水有机污染物净化效果的研究. 应用生态学报, 1992, 3: 355–362



Zhang L S, Yu D C, Liu H L, Yao J B, Zhu Y, Yin Z H, Jiang P, Ke F. Purification effect of slow rate land treatment system on organic pollutants in municipal wastewater from west Shenyang. Chin J Appl Ecol, 1992, 3: 355–362 (in Chinese with English abstract)



[10] 蔡全英, 莫测辉, 吴启堂, 王伯光. 城市污泥堆肥处理过程中有机污染物的变化. 农业环境保护, 2001, 20(3): 186–189



Cai Q Y, Mo C H, Wu Q T, Wang B G. Variation of organic pollutants in treatment of sewage sludge during composting. Agric Environ Prot, 2001, 20(3): 186–189 (in Chinese with English abstract)



[11] 杜青平, 贾晓珊, 袁保红. 1,2,4-三氯苯对水稻种子萌发及幼苗生长的毒性机理. 应用生态学报, 2006, 17: 2185–2188



Du Q P, Jia X S, Yuan B H. Toxic effects of 1,2,4-trichlorobenzene on rice seed germ ination and seedling growth. Chin J Appl Ecol, 2006, 17: 2185–2188 (in Chinese with English abstract) 



[12] 王泽港, 葛才林, 万定珍, 郦志文, 罗时石, 杨建昌. 1,2,4-三氯苯和萘对水稻幼苗生长的影响. 农业环境科学学报, 2006, 25: 1402–1407



Wang Z G, Ge C L, Wan D Z, Li Z W, Luo S S, Yang J C. Effects of 1,2,4-trichlorobenzene and Naphthalene on growth of rice seedling. J Agro-Environ Sci, 2006, 25: 1402–1407 (in Chinese with English abstract)



[13] 张国良, 陈文军, 仇利民, 孙国荣, 戴其根, 张洪程. 不同基因型水稻苗期对1,2,4-三氯苯胁迫的生理响应. 作物学报, 2009, 35: 733–740



Zhang G L, Chen W J, Qiu L M, Sun G R, Dai Q G, Zhang H C. Physiological response to 1,2,4-trichlorobenzene stress of different rice genotypes in seedlings. Acta Agron Sin, 2009, 35:733–740 (in Chinese with English abstract)



[14] 陈文军, 张国良, 孙国荣, 戴其根, 张洪程, 陶金飞, 孙洁, 严林锋. 水稻耐1,2,4-三氯苯胁迫基因型的苗期筛选. 中国农业科学, 2008, 27: 1003–1008



Chen W J, Zhang G L, Sun G R, Dai Q G, Zhang H C, Tao J F, Sun J, Yan L F. Screening of tolerant rice genotypes to 1,2,4-trichlorobenzene stress at seedling stage. J Agro-Environ Sci, 2008, 27: 1003–1008 (in Chinese with English abstract)



[15] 丁秀文, 张国良, 戴其根, 朱青. 1, 2, 4-三氯苯胁迫对水稻分蘖盛期植株生长和生理特性的影响. 作物学报, 2014, 40: 487–496



Ding X W , Zhang G L , Dai Q G, Zhu Q. Effects of 1,2,4-trichlorobenzene on growth and physiological characteristics of rice at maximum tillering stage. Acta Agron Sin, 2014, 40: 487–496 (in Chinese with English abstract)



[16] 王泽港, 万定珍, 杨亚春, 葛才林, 马飞, 杨建昌. 1, 2, 4-三氯苯和萘对水稻产量及品质的影响. 中国水稻科学, 2006, 20: 295–300



Wang Z G, Wan D Z, Yang Y C, Ge C L, Ma F, Yang J C. Effects of 1,2,4-trichlorobenzene and naphthalene on grain yield and quality of rice. Chin J Rice Sci, 2006, 20: 295–300 (in Chinese with English abstract)



[17] 洛育, 张凤鸣, 白良明, 孙世臣, 姜辉, 张玉华, 耿立清. 硝基苯污染对水稻生长发育及稻米安全性的影响. 中国农学通报, 2009, 25(24): 468–471



Luo Y, Zhang F M, Bai L M, Sun S C, Jiang H, Zhang Y H, Geng L Q. Effect of contamination of nitrobenzene on rice growth and food safety of rice. Chin Agric Sci Bull, 2009, 25(24): 468–471 (in Chinese with English abstract)



[18] 王泽港, 骆剑峰, 高红明, 万定珍, 葛才林, 罗时石, 杨建昌. 1,2,4-三氯苯和萘对水稻抽穗期叶片光合特性的影响. 中国农业科学, 2005, 38: 1113–1119



Wang Z G, Luo J F, Gao H M, Wan D Z, Ge C L, Luo S S, Yang J C. Effects of 1,2,4-trichlorobenzene and naphthalene stress on photosynthetic characteristics of rice at heading period. Sci Agric Sin, 2005, 38: 1113–1119 (in Chinese with English abstract)



[19] 潘瑞炽. 植物生理学(第五版). 北京: 高等教育出版社, 2004. pp 56–57, 84–86



Pan R Z. Plant Physiology (Fifth Edn). Beijing: Higher Education Press, 2004. pp 56–57, 84–86 (in Chinese)



[20] 丁艳, 葛才林, 王泽港, 杜庆才. 小麦幼苗对镉和1,2,4-三氯苯污染的响应. 中国农业大学学报, 2011, 16(3): 48–52



Ding Y , Ge C L, Wang Z G, Du Q C. Response of Cd and 1,2,4-trichlorobenzene pollutants on growth of wheat seedlings. J China Agric Univ, 2011, 16(3): 48–52 (in Chinese with English abstract)



[21] Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E D, Caldwell M M, eds. Ecophysiology of Photosynthesis. Berlin: Springer-Verlag, 1994. pp 49–70



[22] Ralph J, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Bot, 2005, 82: 222–237



[23] 徐应明, 袁志华, 李军幸, 戴晓华. 硝基苯和氯苯灌溉对春小麦品质影响研究. 灌溉排水学报, 2004, 23(3): 17–19



Xu Y M, Yuan Z H, Li J X, Dai X H. Research nitrobenzene and chlorobenzene irrigation on spring wheat quality. J Irrig Drain, 2004, 23(3): 17–19 (in Chinese)



[24] 刘宛, 孙铁珩, 李培军, 周启星, 台培东, 张春桂, 许华夏, 张海荣. 三氯苯胁迫对大豆下胚轴膜脂过氧化的影响. 农业环境保护, 2002, 21: 413–416



Liu W, Sun T H, Li P J, Zhou Q X, Tai P D, Zhang C G, Xu H X, Zhang H R. Effect of 1,2,4-Trichlorobenzene stress on membrane lipid peroxidation in soybean hypocotyls. Agro-Environ Prot, 2002, 21: 413–416 (in Chinese with English abstract)



[25] 刘宛, 宋玉芳, 周启星, 李培军, 孙铁珩, 姚德明. 氯苯胁迫对小麦种子发芽和幼苗生长的影响. 农业环境保护, 2001, 20(2): 65–68



Liu W, Song Y F, Zhou Q X, Li P J, Sun T H, Yao D M. Effect of chlorobenzene-stress on seed germination and seedling growth of wheat. Agro-Environ Prot, 2001, 20(2): 65–68 (in Chinese with English abstract)



[26] Ben-asher J, Tsuyuki I, Bravdo B A, Sagih M. Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis. Agric Water Manag, 2006, 83: 13–21



[27] Berry J A, Downton W J S. Environmental regulation of photosynthesis. In: Govind J. Photosynthesis: Vol. II. New York: Academic Press, 1982. pp 263–345



[28] 葛江丽, 石雷, 谷卫彬, 唐宇丹, 张金政, 姜闯道, 任大明. 盐胁迫条件下甜高粱幼苗的光合特性及光系统II功能调节. 作物学报, 2007, 33: 1272–1278



Ge J L, Shi L, Gu W B, Tang Y D, Zhang J Z, Jiang C D, Ren D M. Photosynthetic characteristics and the regulation of photosystem II function in salt stressed sweet sorghum seedlings. Acta Agron Sin, 2007, 33: 1272–1278 (in Chinese with English abstract)



[29] 温国胜, 田海涛, 张明如, 蒋文伟. 叶绿素荧光分析技术在林木培育中的应用. 应用生态学报, 2006, 17: 1973–1977



Wen G S, Tian H T, Zhang M R, Jiang W W. Application of chlorophyll fluorescence analysis in forest tree cultivation. Chin J Appl Ecol, 2006, 17: 1973–1977



[30] 王北洪, 黄木易, 马智宏, 王纪华. 条锈病对冬小麦叶绿素荧光、光合及蒸腾作用的影响. 华北农学报, 2004, 19: 92–94



Wang B H, Huang M Y, Ma Z H, Wang J H. Effect of stripe rust on chlorophyll fluorescence and photosynthesis of winter wheat. Agta Agric Boreali-Sin, 2004, 19: 92–94 (in Chinese with English abstract)



[31] Kiang N Y, Siefert J, Govindjee, Blankenship R E. Spectral signatures of photosynthesis. I. Review of earth organisms. Astrobiology, 2007, 7: 222–251



[32] 张雪芬, 陈怀亮, 郑有飞, 邹春辉, 陈东, 付祥建. 冬小麦冻害遥感监测应用研究. 南京气象学院学报, 2006, 29(1): 94–100



Zhang X F, Chen H L, Zheng Y C, Zhou C H, Chen D, Fu X J. Monitoring the freezing injury of winter wheat by remote sensing. J Nanjing Inst Meteorol, 2006, 29(1): 94–100 (in Chinese with English abstract)



[33] Rizza F, Pagani D, Stanca A M, Cattivelli L. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breed, 2001, 20: 389–396



[34] Grzesiak M, Rzepka A, Czyczylo-Mysza I, Hura T, Dziurka M. Emission and excitation spectra of drought-stressed and non-stressed maize and triticale seedling leaves. Zeszyty Problemowe Postepow Nauk Rolniczych, 2008, 524: 213–220



[35] 翁永玲,宫鹏. 土壤盐渍化遥感应用研究进展. 地理科学,2006, 26: 369–375



Weng Y L, Gong P. Research progress of application of soil salinization remote sensing. Sci Geogr Sin, 2006, 26: 369–375



[36] Pu R L, Kelly M, Anderson G L, Gong P. Using CASI hyperspectral imagery to detect mortality and vegetation stress associated with a new hardwood forest disease. Photogram Eng Remote Sens, 2008, 74: 65–75



[37] Huang W J, Lamb D W, Niu Z, Zhang Y J, Liu L Y, Wang J H. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agric, 2007, 8: 187–197



[38] 张雷明, 上官周平, 毛明策, 于贵端. 长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响. 应用生态学报,2003, 14: 695–698



Zhang L M, Shang-Guan Z P, Mao M C,Yu G D. Effects of long ter m application of nitrogen fertilizer on leaf chlorophyll fluorescence of upland winter wheat. Chin J Appl Ecol, 2003, 14: 695–698 (in Chinese with English abstract)



[39] 王荣富, 张云华, 钱立生, 于江龙. 超级杂交稻两优培九及其亲本的光氧化特性. 应用生态报, 2003, 14: 1309–1312



Wang R F, Zhang Y H, Qian L S, Yu J L. Photooxidation characteristics of super hybrid rice “Liangyoupeijiu” and its parents. Chin J Appl Ecol, 2003, 14: 1309–1312 (in Chinese with English abstract)



[40] 李晓, 冯伟, 曾晓春. 叶绿素荧光分析技术及应用进展. 西北植物学报, 2006, 26: 2186 –2196



Li X, Feng W, Zeng X C. Advances in chlorophyll fluorescence analysis and its uses. Acta Bot Boreali-Occident Sin, 2006, 26: 2186–2196



[41] Subhash N, Wenzel O, Lichtenthaler H K. Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants. Remote Sens Environ, 1999, 69: 215–213



[42] Van Kooten O, Snel J F H. The use of chlorophyll nomenclature in plant stress physiology. Photosynth Res, 1990, 25: 147–150

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[6] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[7] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[8] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[9] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[10] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[11] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[12] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[13] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[14] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[15] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!