Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (07): 954-966.doi: 10.3724/SP.J.1006.2017.00954

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Association Analysis and Exploration of Elite Alleles of Mechanical Harvest-Related Traits with SSR Markers in Upland Cotton Cultivars (Gossypium hirsutum L.)

WANG Juan1,**,DONG Cheng-Guang1,2,**,LIU Li1,KONG Xian-Hui1,WANG Xu-Wen1,YU Yu1,*   

  1. 1 Cotton research Institute, Xinjiang Academy of Agricultural and Reclamation Science / Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Shihezi 832000, China; 2 College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
  • Received:2016-10-12 Revised:2017-04-20 Online:2017-07-12 Published:2017-04-27
  • Contact: Yu Yu, E-mail: xjyuyu021@sohu.com E-mail:cottonwj@126.com
  • Supported by:

    This program was financially supported by the Doctorial Found of Xinjiang Production and Construction Corps (2013BB001) , the Key S&T projects of Xinjiang Production and Construction Corps (2016AA001-1), and the National Natural Science Foundation of China (31260340).

Abstract:

Cotton suitable for mechanical harvest should have higher requirement in traits, for example, shorter growth period, ideal plant type and high sensitivity to defoliant. A total of 214 pairs of SSR with high polymorphism and uniform distribution on whole genome were used to scan polymorphism in 118 cotton varieties with one or more mechanical harvest-related traits. Molecular marker data and six phenotypic traits were analyzed by the method of MLM (mixed linear model) in Tassel 5.0 on the basis of population structure, analysis loci with elite allelic variation and typical materials carrying elite alleles were identified based on phenotypic effect values. We detected 460 alleles and 905 genotypes. The average genetic diversity index was 0.5151, and the average polymorphic information content (PIC) per marker was 0.4587. Ninety-nine markers achieved the aforementioned average values accounted for 46.3% of the total markers, shows that the SSR markers have more allelic variance and higher genetic diversity. All the 118 cotton varieties were divided into four subgroups by analysis of population genetic structure. There was no corresponding relation between each kind of group of materials and the geographical source. A total of 124 loci (P<0.05) and 20 loci (P<0.01) associated with mechanical harvest-related traits were detected by association analysis, with explained variance ranging from 2.23% to 14.15% and from 4.84% to 14.15% respectively. Based on the results of this study, we identified 11 typical materials, including Xi 7, Jinken 9, Y11, Yumian 18, AY-4, K2, Chaoyang 2, DZ22, Zhongmiansuo 43, C2, Guanrongchangzao B14. The elite alleles and resources can be useful for marker-assisted selection breeding.

Key words: Cotton, Mechanical harvest-related traits, Associate on analysis, Allelic variation

[1] 中国农业科学院棉花研究所. 中国棉花遗传育种学. 济南: 山东科学技术出版社, 2003. p 562 Cotton Research Institute, the Chinese Academy of Agricultural Sciences. Genetics and Breeding of Cotton in China. Jinan: Shandong Science&Technology Press, 2003. p 562 (in Chinese) [2] Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics, 2007, 176: 527–541 [3] Zhao L, Lyu Y D, Cai C P, Tong X C, Chen X D, Zhang W, Du H, Guo X H, Guo W Z. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics, 2012, 13: 1–17 [4] 范术丽, 喻树迅, 宋美珍, 原日红. 短季棉早熟性的分子标记及QTL定位. 棉花学报, 2006, 18: 135–139 Fan S L, Yu S X, Song M Z, Yuan R H. Construction of molecular linkage map and QTL mapping for earliness in short-season cotton. Cotton Sci, 2006, 18: 135–139 (in Chinese with English abstract) [5] 张先亮, 王坤波, 宋国立, 刘方, 黎绍惠, 王春英, 张香娣, 王玉红. 陆地棉重组近交系“中G6”QTL的初步定位. 棉花学报, 2008, 20: 192–197 Zhang X L, Wang K B, Song G L, Liu F, Li S H, Wang C Y, Zhang X D, Wang Y H. Primary QTL mapping of upland cotton RIL CRI-G6 by SSR marker. Cotton Sci, 2008, 20: 192–197 (in Chinese with English abstract) [6] Chen H, Qian N, Guo W Z, Song Q P, Li B C, Deng F J, Dong C G, Zhang T Z. Using three selected overlapping RILs to fine-map the yield component QTL on Chro.D8 in Upland cotton. Euphytica, 2010, 76: 321–329 [7] Liu R Z, Ai N J, Zhu X X, Liu F J, Guo W Z, Zhang T Z. Genetic analysis of plant height using two immortalized populations of “CRI12?×?J8891” in Gossypium hirsutum L. Euphytica, 2014, 196: 51–61 [8] Ning Z Y, Chen H, Mei H X, Zhang T Z. Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Euphytica, 2014, 195: 143–156 [9] 努斯热提?吾斯曼, 喻树迅, 范术丽, 庞朝友. 机采棉主要农艺性状相关性分析和QTL定位. 新疆农业科学, 2012, 49: 791–795 Nusurat O, Yu S X, Fan S L, Pang C Y. Correlation of agronomic characters and QTL mapping in mechanical harvest cotton(Gossypum hirsutum L.). Xinjiang Agric Sci, 2012, 49: 791–795 (in Chinese with English abstract) [10] Andersen J R, Zein I, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Lübberstedt T. High levels of linkage disequilibrium and associations with forage quality at phenylalanine ammonia-lyase locus in European maize (Zea mays L.) inbreds. Theor Appl Gent, 2007, 114: 307–319 [11] Szalma S J, Buckler I V E S, Snook M E, McMullen M D. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet, 2005, 110: 1324–1333 [12] Wang J, McClean P E, Lee R, Goos R J, Helms T. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet, 2008, 116: 777–787 [13] Niu Y, Xu Y, Liu X F, Yang S X, Wei S P, Xie F T, Zhang Y M. Association mapping for seed size and shape traits in soybean cultivars. Mol Breed, 2013, 31: 785–794 [14] Patel J S, Mamidi S, Bonman J M, Adhikari T B. Identification of QTL in spring wheat associated with resistance to a novel isolate of Pyrenophora tritici-repentis. Crop Sci, 2013, 53: 842–852 [15] Narayanan S, Vara Prasad P V, Shroyer K, Gill B S, Fritz A. Characterization of a spring wheat association mapping panel for root traits. Agron J, 2014, 106: 1593–1604 [16] Malysheva-Otto L V, Ganal M W, Roder M S. Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet, 2006, 7: 6 [17] Liu G Z, Mei H X, Wang S, Li X H, Zhu X F, Zhang T Z. Association mapping of seed oil and protein contents in upland cotton. Euphytica, 2015, 205: 637–645 [18] Li C Q, Zhang J B, Hu G H, Fu Y Z, Wang Q L. Association mapping and favorable allele mining for node of first fruiting/sympodial branch and its height in upland cotton (Gossypium hirsutum L.). Euphytica, 2016, 210: 57–68 [19] Li C Q, Ai N J, Zhu Y J, Wang Y Q, Chen X D, Li F, Hu Q Y, Wang Q L Association mapping and favorable allele exploration for plant architecture traits in Upland cotton (Gossypium hirsutum L.) accessions. J Agric Sci, 2016, 154: 567–583 [20] 聂新辉, 尤春源, 鲍健, 李晓方, 惠慧, 刘洪亮, 秦江鸿, 林忠旭. 基于关联分析的新陆早棉花品种农艺和纤维品质性状优异等位基因挖掘. 中国农业科学, 2015, 48: 2891–2910 Nie X H, You C Y, Bao J, Li X F, Hui H, Liu H L, Qin J H, Lin Z X. Exploration of elite alleles of agronomic and fiber quality traits in Xinluzao cotton varieties by association analysis. Sci Agric Sin, 2015, 48: 2891–2910 (in Chinese with English abstract) [21] Mei H X, Zhu X F, Zhang T Z. Favorable QTL alleles for yield and its components identified by association mapping in Chinese upland cotton cultivars. PLoS One, 2013, 8:e82193 [22] Qin H D, Chen M, Yi X D, Bie S, Zhang C, Zhang Y C, Lan J Y, Meng Y Y, Yuan Y L, Jiao C H. Identification of associated SSR markers for yield component and fiber quality traits based on frame map and Upland cotton collections. PLoS One, 2015, 10: e0118073 [23] Cai C P, Ye W X, Zhang T Z, Guo W Z. Association analysis of fiber quality traits and exploration of elite alleles in upland cotton cultivars/accessions (Gossypium hirsutum L.). J Integr Plant Biol, 2014, 56: 51–62 [24] Abdurakhmonov I Y, Kohel R J, Yu J Z, Pepper A E, Abdullaev A A, Kushanov F N, Salakhutdinov I B, Buriev Z T, Ssha S, Scheffler B E. Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics, 2008, 92: 478–487 [25] Zhao Y, Wang H, Chen W, Li Y H. Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS One, 2014, 9: e86308 [26] 杜雄明, 周忠丽. 棉花种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005 Du X M, Zhou Z L . Descriptors and data standard for cotton (Gossypium spp.). Beijing: China Agriculture Press, 2005 (in Chinese) [27] 钱能. 陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析. 南京农业大学博士学位论文, 江苏南京, 2009 Qian N. Genetic Diversity and Association of Gene (QTL) of Breeding Target Traits of Upland Cotton. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2009 (in Chinese with English abstract) [28] Song X L, Zhang T Z. Quantitative trait loci controlling plant architectural traits in cotton. Plant Sci, 2009, 177: 317–323 [29] 薛艳, 张新宇, 沙红, 李雪源, 孙杰, 李保成. 新疆早熟棉品种SSR指纹图谱构建与品种鉴别. 棉花学报, 2010, 22: 360–366 Xue Y, Zhang X Y, Sha H, Li X Y, Sun J, Li B C. Construction of fingerprinting map based on SSR and identification of cultivars for earliness cultivars in upland cotton in Xinjiang. Cotton Sci, 2010, 22: 360–366 (in Chinese with English abstract) [30] Sun F D, Zhang J H, Wang S F, Gong W K, Shi Y Z, Liu A Y, Li J W, Gong J W, Shang H H, Yuan Y L. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed, 2012, 30: 569–582 [31] 艾先涛, 梁亚军, 沙红, 王俊铎, 郑巨云, 吐尔逊江, 多力坤, 李雪源, 华金平. 新疆自育陆地棉品种SSR遗传多样性分析. 作物学报, 2014, 40: 369–379 Ai X T, Liang Y J, Sha H, Wang J Z, Zheng J Y, Tu E X J, Duo L K, Li X Y, Hua J P. Genetic diversity analysis on local upland cotton cultivars in Xinjiang based on SSR markers. Acta Agron Sin, 2014, 40: 369–379 (in Chinese with English abstract) [32] Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP and PCR analysis. Plant Mol Biol, 1993, 11: 122–127 [33] 张军, 武耀廷, 郭旺珍等. 棉花微卫星标记的PAGE/银染快速检测, 棉花学报, 2000, 12: 267–269 Zhang J, Wu Y T, Guo W Z, Zhang T Z. Fast screening of microsatellite markers in cotton with PAGE/silver staining. Cotton Sci, 2000, 12: 267–269 (in Chinese with English abstract) [34] Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128–2129 [35] Pritchard J K, Wen X, Falush D. Documentation for structure software: version 2.3.http://pritch.bsd.uchicago.edu/structure.html, 2009 [36] Evanno G, Regnauts S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol, 2005, 14: 2611–2620 [37] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635 [38] Abdurakhmonov I Y, Saha S, Jenkins J N, Buriev Z T, Shermatov S E, Scheffler B E, Pepper A E, Yu J Z, Kohel R J, Abdukarimov A. Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica, 2009, 136: 401–417 [39] 文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒. 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析II.优异等位变异的发掘. 作物学报, 2008, 34: 1339?1349 Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: II. Exploration of elite alleles. Acta Agron Sin, 2008, 34: 1339–1349 (in Chinese with English abstract) [40] Evanno G, Regnauts S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol, 2005, 14: 2611–2620 [41] Yang X H, Gao S B, Xu S T, Zhang Z X, Prasanna B M, Li L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed, 2011, 28: 511–526 [42] Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations. Am J Human Genet, 2000, 67: 170–181 [43] Zhao K, Aranzana M J, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M. An Arabidopsis example of association mapping in structured samples. PLoS Genet, 2007, 3: 0071–0082

[1] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[2] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[3] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[4] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[5] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[6] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[7] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[8] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[9] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[10] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[11] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[12] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[13] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
[14] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
[15] ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!