Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (05): 706-715.doi: 10.3724/SP.J.1006.2018.00706

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Effects of Key Genomic Regions Controlling Yield-Related Traits in Wheat Founder Parent Fan 6

Mei DENG, Yuan-Jiang HE, Lu-Lu GOU, Fang-Jie YAO, Jian LI, Xue-Mei ZHANG, Li LONG, Jian MA, Qian-Tao JIANG, Ya-Xi LIU, Yu-Ming WEI, Guo-Yue CHEN*()   

  1. Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2017-05-27 Accepted:2017-11-21 Online:2018-05-20 Published:2017-12-27
  • Contact: Guo-Yue CHEN E-mail:gychen@sicau.edu.cn
  • Supported by:
    This study was spported by the National Key Research and Development Program of China (2016YFD0102000, 2016YFD0100100).

Abstract:

Fan 6 is an important wheat founder parent in China. A deep understanding on the genetic mechanism for excellent agronomic traits in Fan 6 will facilitate its utilization in wheat breeding. In this study, seven yield-related traits were investigated in Fan 6 and its 39 derived varieties and trait-associated chromosomal regions were scanned with genome-wide SSR markers. The traits investigated showed no significant differences between Fan 6 and its derived varieties, indicating that these traits have been subjected to directive selection and inherited stably from Fan 6 to its offspring. Out of the 417 SSR markers flanking loci for yield-related traits, 11 Fan 6-specific markers were detected frequently in its derived varieties. Trait-marker association analysis indicated that 21 Fan 6-specific markers were significantly associated with yield-related traits (P < 0.01). Two chromosomal intervals, Xgdm93.3-Xgwm526.2 on 2A and Xbarc100-Xgwm156.1 on 5A, were identified to control plant height + spikelet number per spike and thousand-kernel weight, respectively. The present study confirmed that the loci or chromosomal regions associated with yield-related traits are key factors for high yield and have been selected intensively and continuously during breeding process in Sichuan and even Southwest wheat zones.

Key words: Fan 6, wheat founder parent, yield-related traits, association analysis

Supplementary table 1

Varieties used and their pedigrees"

编号
No.
品种
Variety
世代
Generation
系谱或亲本类型
Pedigree or parental type
1

繁6 Fan 6

FP

伊博1828/印度824/3/五一麦//成都光头/中农483/4/中农28B/伊博1828//印度
824//阿夫
Yibo l828/India 824/3/Wuyimai//Chengduguangtou/Zhonnnon 9483/4/Zhongnong
28B/Yibo l828//India 824//Funo
2 川育5号 Chuanyu 5 1st 繁6姊妹系69-1776/大粒早 69-1776 of Fan 6’s sib-line/Dalizao
3 川育6号 Chuanyu 6 1st 繁6/川麦10号 Fan 6/Chuanmai 10
4 绵阳12 Mianyang 12 1st 406C3-4-5/繁6 406C3-4-5/Fan 6
5 绵阳11 Mianyang 11 1st 70-5858/繁6 70-5858/Fan 6
6 巴麦18 Bamai 18 1st 内江31/繁6 Neijiang 31/Fan 6
7 蜀万831 Shuwan 831 1st 蜀万761/繁6 Shuwan 761/Fan 6
编号
No.
品种
Variety
世代
Generation
系谱或亲本类型
Pedigree or parental type
8 80-8 1st 繁6变异株 Mutant line of Fan 6
9 川辐4号 Chuanfu 4 2nd 巴麦18/799-6007 Bamai 18/799-6007
10 绵阳15 Mianyang 15 2nd 70-5858/繁6 70-5858/Fan 6
11 绵阳19 Mianyang 19 2nd 绵阳11选系 Selection line of Mianyang 11
12 绵阳20 Mianyang 20 2nd 绵阳11选系 Selection line of Mianyang 11
13 绵阳21 Mianyang 21 2nd 绵阳11选系 Selection line of Mianyang 11
14 绵阳29 Mianyang 29 2nd 绵阳11/江油83-5 Mianyang 11/Jiangyou 83-5
15 川农麦1号 Chuannongmai 1 2nd 绵阳11/川雅84-1 Mianyang 11/Chuanya 84-1
16 川麦21 Chuanmai 21 2nd 绵阳11/77中2882 Mianyang 11/77 zhong 2882
17 川麦22 Chuangmai 22 2nd 绵阳11/川麦20 Mianyang 11/Chuanmai 20
18 渝麦4号 Yumai 4 2nd 77中2882/巴麦18 77 zhong 2882/Bamai 1877
19 川辐1号 Chuanfu 1 2nd β射线处理川育5号种子 Chuanyu 5 by β ray mutagenesis
20 川育18 Chuanyu 18 2nd 川育5号/墨460//94 F2-4 Chuanyu 5/Mexipak 460//94F2-4
21 川育7号 Chuanyu 7 3rd 繁6/原110//阿170-8 Fan 6/Yuan 110//A170-8
22 川麦45 Chuanmai 45 3rd 绵阳11//川麦22/川辐3号/3/PC17//繁6/川麦18
Mianyang 11//Chuanmai 22 Chuanfu/3/PC 17//Fan 6/Chuanmai 18
23 川育19 Chuanyu 19 3rd 川育5号/墨460//绵阳26 Chuanyu 5/Mexipak 460//Mianyang 26
24 川麦28 Chuanmai 28 3rd 万雅2号/繁6//高加索/繁6///绵阳19 Wanya 2/Fan 6//Kavkaz/Fan 6///Mianyang 19
25 绵阳26 Mianyang 26 3rd 川育9号/绵阳20 Chuanyu 9/Mianyang 20
26 川麦24 Chuanmai 24 3rd 8282-15/绵阳19 8282-15/Mianyang 19
27 川辐2号 Chuanfu 2 3rd β射线诱变川辐1号(77中2882) F1
F1 of Chuanyu 1 (77 zhong 2882) by β-ray mutagenesis
28 川辐3号 Chuanfu 3 3rd β射线川辐1号(77中2282) Chuanyu 1 (77 zhong 2882) by β-ray mutagenesis
29 绵农3号 Miannong 3 3rd 75-21-4/76-19//绵农1号 75-21-4/76-19//Miannong 1
30 绵农4号 Miannong 4 3rd 75-21-4/76-19//绵农1号 75-21-4/76-19//Miannong 1
31 川育17 Chuanyu 17 4th 绵阳26/G295-4 Mianyang 26/G295-4
32 内麦8号 Neimai 8 4th 绵阳26/92R178 Mianyang 26/92R178
33 内麦9号 Neimai 9 4th 绵阳26/92R178 Mianyang 26/92R178
34 良麦2号 Liangmai 2 4th 绵阳26/异源2号 Mianyang 26/Yiyuan 2
35 科成麦2号 Kechengmai 2 4th 咸阳大穗/E//多花-1/3/贵农20/4/绵阳26
Xianyangdasui/E//Duohua-1/3/Guinong 20/4/Mianyang 26
36 川麦47 Chuanmai 47 4th Syn-CD786/绵阳26//绵阳26 Syn-CD786/Mianyang 26//Mianyang 26
37 川育8号 Chuanyu 8 4th 阿二矮/川育7号 Aerai/Chuanyu 7
38 川育12 Chuanyu 12 5th 川育8号/83-4516 Chuanyu 8/83-4516
39 川农16 Chuannong 16 5th 川育12/87-429 Chuanyu 12/87-429
40 川育14 Chuanyu 14 5th 川育9号/黔花1号//川育8号/4/繁7/高加索//川育5号/3/川育9号
Chuanyu 9/Qianhua 1//Chuanyu 8/4/Fan 7/Kavkaz//Chuanyu 5/3/Chuanyu 9
41 大粒早 Dalizao MP Middle parent
42 川麦10号 Chuanmai 10 MP Middle parent
43 蜀万761 Shuwan 761 MP Middle parent
44 阿二矮 A’er’ai MP Middle parent
45 异源2号 Yiyuan 2 MP Middle parent
46 Alondra”S” MP Middle parent
编号
No.
品种
Variety
世代
Generation
系谱或亲本类型
Pedigree or parental type
47 雅安早 Yaanzao MP Middle parent
48 竹叶青 Zhuyeqing MP Middle parent
49 玛拉Mara MP Middle parent
50 IBO1828 MP Middle parent
51 大头黄 Datouhuang MP Middle parent
52 万雅2号 Wanya 2 MP Middle parent
53 84-2014 MP Middle parent
54 川雅84-1 Chuanya 84-1 MP Middle parent
55 阿勃 Abbondanza OFP Other founder parent
56 南大2419 Nanda 2419 OFP Other founder parent
57 小偃6号 Xiaoyan 6 OFP Other founder parent
58 洛夫林10号 Lovrin 10 OFP Other founder parent
59 碧玛4号 Bima 4 OFP Other founder parent
60 蚂蚱麦 Mazhamai OFP Other founder parent
61 江东门 Jiangdongmen OFP Other founder parent
62 蚰子麦 Youzimai OFP Other founder parent
63 燕大1817 Yanda 1817 OFP Other founder parent
64 欧柔 Orofen OFP Other founder parent
65 阿夫 Funo OFP Other founder parent
66 北京8号 Beijing 8 OFP Other founder parent
67 西农6028 Xinong 6028 OFP Other founder parent
68 矮孟牛Aimengniu OFP Other founder parent
69 墨巴66 Mexipak 66 OFP Other founder parent
70 早洋麦 Early premium OFP Other founder parent
71 周8425B Zhou 8425B OFP Other founder parent
72 五一麦 Wuyimai OFP Other founder parent
73 成都光头 Chengduguangtou OFP Other founder parent
74 扬麦158 Yangmai 158 CFP Candidatefounder parent
75 川麦42 Chuanmai 42 CFP Candidatefounder parent

Supplementary fig. 1

The pedigree diagram of the founder parent Fan 6 and 39 derivatives"

Table 1

Comparison of yield related traits in Fan 6 and its derivatives"

品种或世代
Variety or generation
株高
PH (cm)
穗长
SL (cm)
小穗数
SLN
小穗粒数
KNSL
穗粒数
KNS
穗粒重
KWS (g)
千粒重
TKW (g)
有效分蘖
ETN
对照品种 Control variety 110.61 15.51 25.00 4.6 87.76 1.78 48.88 7.0
繁6 Fan 6 90.10 10.27 24.90 4.7 72.29 3.03 39.85 6.2
繁6衍生后代 Derivated generations from Fan 6
第1代 1st generation (n=7) 87.46 11.16 22.79 4.3 66.57 2.95 39.85 6.1
第2代 2nd generation (n=12) 91.73 12.38 22.95 3.8 66.86 2.65 45.20 5.6
第3代 3rd generation (n=10) 86.67 12.81 22.63 4.1 67.73 2.53 44.91 4.0
第4代 4th generation (n=7) 89.49 13.29 23.56 3.6 78.51 1.89 42.16 4.8
第5代 5th generation (n=3) 82.21 9.89 21.43 4.2 70.86 1.95 42.35 6.2

Table 2

Correlation coefficient between yield related traits in Fan 6 and its derivatives"

性状
Trait
株高
PH
穗长
SL
小穗数
SLN
小穗粒数
KNSL
有效分蘖
ETN
穗粒数
KNS
穗粒重
KWS
千粒重
TKW
株高PH 0.12 -0.02 -0.16 0.29 0.04 0.26 -0.18
穗长SL 0.28 -0.02 -0.05 0.24 -0.17 0.35* -0.11
小穗数SLN 0.14 0.27 -0.45** 0 0.44** -0.12 0.05
小穗粒数KNSL 0.31 0.13 0.14 0.14 0.55** -0.02 -0.03
有效分蘖ETN 0.24 -0.22 -0.18 0.01 0.22 -0.44** 0.29
穗粒数KNS 0.47** 0.14 0.33 0.86** 0.07 0.76** -0.70
穗粒重KWS 0.48** 0.42* 0.22 0.61** 0.03 0.75** 0.84**
千粒重TKW 0.03 0.41* -0.03 -0.29 0.02 -0.29 0.33*

Table 3

Transmission of specific alleles from Fan 6 to its derivated generations"

繁6衍生世代
Fan 6-derived generation
品种数
Number of varieties
变异位点
Number of specific alleles
传递频率Transmission frequency (%)
范围 Range 平均Average
第1代 1st generation 7 51 8.3-91.7 49.2
第2代 2nd generation 12 28 7.7-76.9 40.4
第3代 3rd generation 10 25 14.3-100.0 44.6
第4代 4th generation 7 17 14.3-71.4 42.9
第5代 5th generation 3 15 15.7-84.9 45.4

Table 4

SSR loci significantly associated with yield-related traits in Fan 6 and its derivatives"

性状
Trait
标记
Marker
染色体
Chromosome
P
P-value
R2
(%)
株高 Plant height Xgwm614 2A 0.0167 11.76
Xcfd80 6A 0.0220 8.83
Xwmc722 4D 0.0255 7.51
Xcfd51 2D 0.0525 5.55
Xbarc10 5A 0.0068 12.41
Xwmc505 3A 0.0123 9.82
Xcfa2170 1D 0.0027 13.16
Xgwm526 2A 0.0044 12.01
Xbarc96 5B 0.0164 8.49
穗长 Spike length Xbarc61 1B 0.0187 0.0946
Xbarc10 2B/4B/5A/7B 0.0158 0.1425
Xcfa2201 2B 0.0260 0.0890
Xgpw363 1B 0.0101 0.1095
小穗数Spikelet number per spike Xgwm415 5A 0.0246 0.1462
Xcfd14 7D 0.0048 0.1342
Xgwm526 2A 0.0368 0.0751
小穗粒数 Kernal number per spikelet Xbarc174 1B/2B/7A 0.0390 0.1074
千粒重 Thousand-kernel weight Xbarc100 5A 0.0164 0.0821
Xcfd14 7D 0.0090 0.1021
Xcfd19 1D/5D/6D 0.0282 0.0715
Xwmc285 4D 0.0072 0.1375
Xwmc723 7B 0.0132 0.0872
Xgwm333 7B 0.0086 0.1337
有效分蘖 Effective tiller number Xbarc56 5A 0.0024 0.1516
[1] Fao F.Statistical Yearbook 2013 (Statistical Yearbook 2013: World Food and Agriculture. FAO (), Rome, 2012
[2] 何中虎, 夏先春, 罗晶, 辛志勇, 孔秀英, 景蕊莲, 吴振录, 李杏普. 国际小麦育种研究趋势分析. 麦类作物学报, 2006, 26: 154-156
doi: 10.7606/j.issn.1009-1041.2006.02.084
He Z H, Xia X C, Luo J, Xin Z Y, Kong X Y, Jing R L, Wu Z L, Li X P.Trend analysis of international wheat breeding.J Triticeae Crops, 2006, 26: 154-156 (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2006.02.084
[3] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003
Zhuang Q S.Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003 (in Chinese)
[4] 徐鑫, 李小军. 小麦骨干亲本研究进展. 河南农业科学, 2012, 41(2): 5-8
doi: 10.3969/j.issn.1004-3268.2012.02.002
Xu X, Li X J.Research progress of founder parents in wheat.J Henan Agric Sci, 2012, 41(2): 5-8 (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-3268.2012.02.002
[5] Li X J, Xu X, Yang X M, Li X Q, Liu H W, Gao A N, Li L H.Genetic diversity among a founder parent and widely grown wheat cultivars derived from the same origin based on morphological traits and microsatellite markers.Crop Pasture Sci, 2012, 63: 303-310
doi: 10.1071/CP11302
[6] Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S, Zhang L, Ma Z.Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding.Theor Appl Genet, 2013, 126: 2123-2139
doi: 10.1007/s00122-013-2123-8 pmid: 23689745
[7] 袁园园, 王庆专, 崔法, 张景涛, 杜斌, 王洪刚. 小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递. 作物学报, 2010, 36: 9-16
doi: 10.3724/SP.J.1006.2010.00009
Yuan Y Y, Wang Q Z, Cui F, Zhang J T, Du B, Wang H G.Specific loci in genome of wheat milestone parent Bima 4 and their transmissionin derivatives.Acta Agron Sin, 2010, 36: 9-16 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00009
[8] 肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因. 中国农业科学, 2011, 44: 3919-3929
Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H.Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives.Sci Agric Sin, 2011, 44: 3919-3929 (in Chinese with English abstract)
[9] 张学勇, 董玉琛, 游光侠, 王兰芬, 李培, 贾继增. 中国小麦大面积推广品种及骨干亲本的高分子量谷蛋白亚基组成分析. 中国农业科学, 2001, 34: 355-362
doi: 10.3321/j.issn:0578-1752.2001.04.002
Zhang X Y, Dong Y C, You G X, Wang L F, Li P, Jia J Z.Allelic variation of Glu-A1, Glu-B1 and Glu-D1 in Chinese commercial wheat varieties in the last 50 years.Sci Agric Sin, 2001, 34: 355-362 (in Chinese with English abstract)
doi: 10.3321/j.issn:0578-1752.2001.04.002
[10] 肖静, 刘金良, 田纪春. 矮孟牛及其衍生品种(系)HMW-GS、蛋白质含量及沉淀值的演化分析. 麦类作物学报, 2010, 30: 765-769
Xiao J, Liu J L, Tian J C.Evolution Analysis of composition of high molecular weight subunits, protein contents and sedimentation values among Aimengniu and its derived varieties.J Triticeae Crops, 2010, 30: 765-769 (in Chinese with English abstract)
[11] 颜济. 五十年四川小麦育种研究的回顾与前瞻. 四川农业大学学报, 1999, 17: 112-117
Yan J.History and prospect of study on wheat breeding of fifty years in Sichuan.J Sichuan Agric Univ, 1999, 17: 112-117 (in Chinese with English abstract)
[12] 牛永春, 吴立人. 繁6-绵阳系小麦抗条锈性变异及对策. 植物病理学报, 1997, 27: 5-8
Niu Y C, Wu L R.The breakdown of resistance to stripe rust in fan 6-mianyang wheat cultivars and strategies for its control.Acta Phytopathol Sin, 1997, 27: 5-8 (in Chinese with English abstract)
[13] 陈国跃, 刘伟, 何员江, 苟璐璐, 余马, 陈时盛, 魏育明, 郑有良. 小麦骨干亲本繁6条锈病成株抗性特异位点及其在衍生品种中的遗传解析. 作物学报, 2013, 39: 827-836
Chen G Y, Liu W, He Y J, Gou L L, Yu M, Chen S S, Wei Y M, Zheng Y L.Specific loci for adult-plant resistance to stripe rust in wheat founder parent Fan 6 and their genetic dissection in its derivatives.Acta Agron Sin, 2013, 39: 827-836 (in Chinese with English abstract)
[14] Sharp P J, Kresis M, Shewry P, Gale M D.Location of beta-amylase sequences in wheat and its relatives.Theor Appl Genet, 1989, 75: 286-290
doi: 10.1007/BF00303966
[15] 李立会, 李秀全. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006
Li L L, Li X Q.Description Specification and Data Standard of Wheat Germplasm Resources. Beijing: China Agriculture Press, 2006 (in Chinese)
[16] 王健维, 程宇坤, 叶雪玲, 李跃, 周露, 吴雪莲, 姚方杰, 杨柳永, 刘涛, 刘亚西, 江千涛, 陈国跃. 小麦品质相关性状的一致性数量性状位点(MQTL)连锁图谱构建. 农业生物技术学报, 2015, 23: 671-682
doi: 10.3969/j.issn.1674-7968.2015.05.013
Wang J W, Cheng Y K, Ye X L, Li Y, Zhou L, Wu X L, Yao F J, Yang L Y, Liu T, Liu Y X, Jiang Q T, Chen G Y.Construction of linkage map of the meta quantitative trait loci (MQTL) on quality related traits in wheat (Triticum aestivum L.). Chin J Agric Biotechol, 2015, 23: 671-682 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2015.05.013
[17] Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W.A microsatellite map of wheat.Genetics, 1998, 149: 2007-2023
doi: 10.1016/B0-12-227620-5/00113-0 pmid: 9691054
[18] Pestsova E, Ganal M W, Röder M S.Isolation and mapping of microsatellite markers specific for the D genome of bread wheat.Genome, 2000, 43: 689-697
doi: 10.1139/gen-43-4-689 pmid: 10984182
[19] Yu J, Pressoir G, Briggs W H, Vroh B I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness.Nat Genet, 2006, 38: 203-208
doi: 10.1038/ng1702 pmid: 16380716
[20] Somers D J, Isaac P, Edwards K.A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114
doi: 10.1007/s00122-004-1740-7 pmid: 15490101
[21] Shoemaker R C, Guffy R D, Lorenzen L L, Specht J E.Moleculargenetic mapping of soybean: map utilization.Crop Sci, 1992, 32:1091-1098
doi: 10.1007/BF02852128
[22] 司清林, 刘新伦, 刘智奎, 王长有, 吉万全. 阿夫及其衍生小麦品种(系)的SSR分析. 作物学报, 2009, 35: 615-619
Si Q L, Liu X L, Liu Z K, Wang C Y, Ji W Q.SSR analysis of Funo wheat and its derivatives.Acta Agron Sin, 2009, 35: 615-619 (in Chinese with English abstract)
[23] Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S, Zhang L, Ma Z.Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding.Theor Appl Genet, 2013, 126: 2123-2139
doi: 10.1007/s00122-013-2123-8 pmid: 23689745
[24] 韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009, 35: 1395-1404
Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y.Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program.Acta Agron Sin, 2009, 35: 1395-1404 (in Chinese with English abstract)
[25] 李小军, 徐鑫, 刘伟华, 李秀全, 李立会. 利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传. 中国农业科学, 2009, 42: 3397-3404
Li X J, Xu X, Liu W H, Li X Q, Li L H.Genetic diversity of the founder parent Orofen and its progenies revealed by SSR markers.Sci Agric Sin, 2009, 42: 3397-3404 (in Chinese with English abstract)
[26] Vollbrecht E, Springer P S, Goh L, Buckler E S, Martienssen R.Architecture of floral branch systems in maize and related grasses.Nature, 2005, 436: 1119-1126
doi: 10.1038/nature03892 pmid: 16041362
[27] Flavio B, Sorrells M E.Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177
doi: 10.1534/genetics.105.044586 pmid: 16079235
[28] Jantasuriyarat C, Vales M I, Watson C J, Riera-Lizarazu O.Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 108: 261-273
doi: 10.1007/s00122-003-1432-8 pmid: 13679977
[29] Nelson J C, Sorrells M E, Van Deynze A E, Lu Y H, Atkinson M, Bernard M, Leroy P, Faris J D, Anderson J A. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7.Genetics, 1995, 141: 721-731
[30] Díaz A, Zikhali M, Turner A S, Isaac P, Laurie D A.Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat(Triticum aestivum). PLoS One, 2012, 7: e33234
[31] Simons K J, Fellers J P, Trick H N, Zhang Z, Tai Y S, Gill B S, Faris J D.Molecular characterization of the major wheat domestication gene Q. Genetics, 2006, 172: 547-555
[32] Zhang Z, Belcram H, Gornicki P, Charles M, Just J, Huneau C, Magdelenat G, Couloux A, Samain S, Gill B S, Rasmussen J B, Barbe V, Faris J D, Chalhoub B.Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc Natl Acad Sci USA, 2011, 108: 18737-18742
doi: 10.1073/pnas.1110552108 pmid: 22042872
[33] Kato K, Miura H, Sawada S.QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat.Theor Appl Genet, 1999, 98: 472-477
doi: 10.1007/s001220051094
[34] Kato K, Miura H, Sawada S.Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat.Theor Appl Genet, 2000, 101: 1114-1121
doi: 10.1007/s001220051587
[35] Li Z, Peng T, Xie Q, Han S, Tian J.Mapping of QTL for tiller number at different stages of growth in wheat using double haploid and immortalized F2 populations.J Genet Genomics, 2010, 89: 409-415
[36] Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H.Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat.Theor Appl Genet, 2011, 122: 1517-1536
doi: 10.1007/s00122-011-1551-6 pmid: 21359559
[37] Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J.Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm.Mol Breed, 2012, 29: 159-171
doi: 10.1007/s11032-010-9534-x pmid: 19430758
[1] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[2] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[3] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[4] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[5] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[6] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[7] XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902.
[8] LI Jing-Cai, WANG Qiang-Lin, SONG Wei-Wu, HUANG Wei, XIAO Gui-Lin, WU Cheng-Jin, GU Qin, SONG Bo-Tao. Association analysis of dormancy QTL in tetraploid potato via candidate gene markers [J]. Acta Agronomica Sinica, 2020, 46(9): 1380-1387.
[9] PENG Bo,ZHAO Xiao-Lei,WANG Yi,YUAN Wen-Ya,LI Chun-Hui,LI Yong-Xiang,ZHANG Deng-Feng,SHI Yun-Su,SONG Yan-Chun,WANG Tian-Yu,LI Yu. Genome-wide association studies of leaf orientation value in maize [J]. Acta Agronomica Sinica, 2020, 46(6): 819-831.
[10] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[11] Yun-Fu LI,Jing-Xian WANG,Yan-Fang DU,Hua-Wen ZOU,Zu-Xin ZHANG. Identification of indeterminate domain protein family genes associated with flowering time in maize [J]. Acta Agronomica Sinica, 2019, 45(4): 499-507.
[12] Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203.
[13] Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821.
[14] Guo-Qing CUI,Shi-Ming WANG,Fu-Ying MA,Hui WANG,Chao-Zhong XIANG,Yun-Feng LI,Guang-Hua HE,Chang-Wei ZHANG,Zheng-Lin YANG,Ying-Hua LING,Fang-Ming ZHAO. Identification of Rice Chromosome Segment Substitution Line Z1377 with Increased Plant Height and QTL Mapping for Agronomic Important Traits [J]. Acta Agronomica Sinica, 2018, 44(10): 1477-1484.
[15] SHEN Cong-Cong,ZHU Ya-Jun,CHEN Kai,CHEN Hui-Zhen,WU Zhi-Chao,MENG Li-Jun,XU Jian-Long. Mapping of QTL for Heading Date and Plant Height Using MAGIC Populations of Rice [J]. Acta Agron Sin, 2017, 43(11): 1611-1621.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!