Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (4): 568-577.doi: 10.3724/SP.J.1006.2019.83052

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Excavation of main candidate genome regions in Suwan germplasm improvement process of maize

LI Xiu-Shi,WU Xun,WU Wen-Qiang,LIU Peng-Fei,GUO Xiang-Yang,WANG An-Gui,ZHU Yun-Fang,CHEN Ze-Hui()   

  1. Upland Crops Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
  • Received:2018-06-26 Accepted:2018-12-24 Online:2019-04-12 Published:2019-01-04
  • Contact: Ze-Hui CHEN E-mail:chenzh907@sina.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0101206);Innovation Program of QAAS(Special Character of Independent Innovation of Guizhou Academy of Agriculture [2014]006);National Natural Science Foundation of China(31760387);Science and Technology Support Project of Guizhou Province (Qiankehe support([2016]2605, [2016]2549, [2017]2507, [2018]2296);Science and Technology Project of Guizhou Province (Qiankehe Foundation)([2017]1413)

Abstract:

Suwan germplasm with good resistance, strong adaptability and excellent grain quality has played an irreplaceable role in modern breeding, especially in the southern of China. It is important to clarify the genetic mechanism of Suwan germplasm. In this study, modified generations of Suwan 1 (Suwan 1 C10) and its derived population (Suwan-Lancaster 1 C0) were used to be genotyped by using MaizeSNP50 chips containing about 56,000 SNP markers. There was a smaller genome differences among different improved generations for Suwan 1 population, with only five different inherited fragments identified, among which four appeared only in the 11th improved generation (Suwan 1 C11), one appeared only in the 15th improved generation (Suwan 1 C15). For Suwan-Lancaster1 population, among 18 different genetic fragments eight were stably inherited in different improved generations. A total of 43 specific genetic segments of Lancaster germplasm were obtained, among them 35 were stably inherited in different improved generations. Genome-wide association studies (GWAS) showed that 16 QTNs significantly associated with kernel row number were located on chromosomes 2, 3, 5, 6, 7, 8, and 9, respectively, among them SYN25713 and SYN36577 were located in the Lancaster specific genetic fragment of the Suwan-Lancaster 1 population. A total of 13 QTNs related to ear length were located on chromosomes 1, 2, 5, 7, 8, and 9, respectively, among them PZE-105143697 was located in the Lancaster specific genetic fragment. These results provide an important theoretical basis for the subsequent genome-wide association study and molecular marker assisted selection.

Key words: maize, population improvement, genome characteristics, genome-wide association study, genetic loci

Table 1

Pedigree and groups of accessions used in this paper"

序号
No.
材料
Accession
系谱
Pedigree
类群
Group
1 Suwan 1 (Suwan 1 C10) Suwan 1 C9 Suwan
2 Suwan 1 C11 Suwan 1 C10 Suwan
3 Suwan 1 C12 Suwan 1 C11 Suwan
4 Suwan 1 C13 Suwan 1 C12 Suwan
5 Suwan 1 C15 Suwan 1 C14 Suwan
6 苏兰1号C0 SL1C0 Suwan, Lancaster及78599选系
Synthetic populations of Suwan, Lancaster and 78599 selected lines
Suwan-Lancaster
7 苏兰1号C1 SL1C1 苏兰1号C0 SL1C0 Suwan-Lancaster
8 苏兰1号C2 SL1C2 苏兰1号C1 SL1C1 Suwan-Lancaster
9 苏兰1号C3 SL1C3 苏兰1号C2 SL1C2 Suwan-Lancaster

Table 2

Ear length and ear row number of nine tested groups"

材料
Accession
穗长 Ear length 穗行数 Kernel row number
贵阳
Guiyang
大方
Dafang
罗平
Luoping
平均值
Mean
贵阳
Guiyang
大方
Dafang
罗平
Luoping
平均值
Mean
苏兰1号C0 SL1C0 17.67 18.77 17.40 17.94 15.47 14.53 14.67 14.89
苏兰1号C1 SL1C1 18.13 19.33 17.17 18.21 15.33 14.73 14.27 14.78
苏兰1号C2 SL1C2 17.87 18.97 18.20 18.34 14.27 14.27 14.47 14.33
苏兰1号C3 SL1C3 18.27 19.57 17.73 18.52 15.00 15.53 15.20 15.24
Suwan 1 (Suwan 1 C10) 17.47 18.33 16.43 17.41 15.00 14.93 14.00 14.64
Suwan 1 C11 17.67 18.23 17.03 17.64 15.40 14.93 14.13 14.82
Suwan 1 C12 16.87 17.97 16.33 17.06 15.13 15.87 14.60 15.20
Suwan 1 C13 16.53 18.17 16.20 16.97 15.40 14.93 14.20 14.84
Suwan 1 C15 17.60 18.53 17.03 17.72 14.60 14.60 14.53 14.58
平均值Mean 17.56 18.65 17.06 17.76 15.07 14.93 14.45 14.81
标准差Standard deviation 1.09 0.73 0.84 1.11 0.67 0.57 0.65 0.68
变异系数Coefficient of variation (%) 6.21 3.91 4.92 6.25 4.45 3.82 4.50 4.59

Fig. 1

Genomic characteristics of Suwan 1 in different improved generations The physical location of the specific SNP markers on chromosome is shown in the Supplementary table 1."

Table 1

1 Supplementary table 1 Specific markers for different improvement generations of Suwan 1 population"

SNP 染色体
Chr.
物理位置
Position
SNP 染色体
Chr.
物理位置
Position
SYN450 1 35968064 PZE-106016986 6 32497838
PZE-103104159 3 164159285 PZE-106016987 6 32498979
PZE-106016953 6 32495316 PZE-106017115 6 32905813
PZE-106016962 6 32495710 PZE-106017122 6 32908494
PZE-106016971 6 32496071 PZE-106099248 6 152896893
PZA00540.3 6 32496071 PZE-108113902 8 163858777

Fig. 2

Genomic characteristics of Suwan-Lancaster1 in different improved generations The physical location of the specific SNP markers on chromosome is shown in Supplementary table 2."

Table 2

2 Supplementary table 2 Specific markers for different improvement generations of Suwan-Lancaster 1 population"

SNP 染色体
Chr.
物理位置
Position
SNP 染色体
Chr.
物理位置
Position
PZE-101205609 1 253344590 PZE-102156731 2 203902578
PZE-101205965 1 253895960 SYN15645 3 182660027
SYN6838 1 297376850 PZE-105016506 4 7204051
PZE-103008521 2 4666469 PZE-106033525 5 76988770
PZE-102060229 2 38551101 SYN25006 6 8192709
PZE-102060230 2 39031517 PZE-107126153 7 163083361
PZE-102061400 2 39748797 PZE-109019803 7 20222259
SYN26925 2 200353907 PZE-109051268 9 85880947
SYN26929 2 200359094 PZE-109051619 9 86414796
SYN10568 2 200723525 PZE-109052137 9 86974491
SYN35589 2 201246108

Fig. 3

Genomic characteristics between Suwan 1 and Suwan-Lancaster 1 in different improved generations The physical location of the specific SNP markers on chromosome is shown in Supplementary table 3."

Table 3

3 Supplementary table 3 Specific markers between Suwan 1 and Suwan-Lancaster 1 in different improved generations"

SNP 染色体
Chr.
物理位置
Position
SNP 染色体
Chr.
物理位置
Position
SYN11491 1 3683507 PZE-104127854 4 212788677
PZE-101054452 1 38617583 PZE-104127855 4 212788991
PZE-101178005 1 222370910 PZE-104152999 4 243521349
PZE-101192090 1 237838603 SYN28825 5 7319620
PZE-101192133 1 237900682 PZE-105051178 5 43960922
PZE-101192647 1 238680213 PZE-105051179 5 43961044
PZE-101195574 1 242361972 PZE-105051200 5 43966297
PZE-101195592 1 242398910 PZE-105099516 5 146942464
PZE-101196147 1 243255282 PZE-105101687 5 152095801
PZE-101196704 1 244083020 PZE-105102557 5 154315332
PZE-101196940 1 244512792 PZE-105144984 5 197943057
PZE-101197050 1 244678601 PZB02424.1 5 199531408
SYN12881 1 245242156 SYN30468 5 199531778
PZE-101197856 1 245308899 PZA00540.3 6 32496071
SYN15061 1 261370341 PZE-106016971 6 32496071
PZE-102060229 2 38551101 PZE-106017115 6 32905813
PZE-102060230 2 39031517 PZE-106017122 6 32908494
SYN26925 2 200353907 SYN25006 7 8192709
SYN26929 2 200359094 PZE-107018281 7 15776884
SYN35589 2 201246108 PZE-107126153 7 163083361
PZE-103025362 3 17738644 SYN34213 8 5090046
PZE-103056619 3 68433447 PZE-108010963 8 11645850
PZE-103068285 3 108233400 PUT-163a-78089347-4225 8 169951365
PZE-103076844 3 123683053 PUT-163a-78089347-4224 8 169951478
PZE-103083872 3 135004208 PZE-109008703 9 9247324
SYN34685 4 202660380 SYN36362 9 9247324
PZE-104126691 4 210495187 PZE-109051619 9 86414796
PZE-104127248 4 211708774 PZE-109101971 9 141650742
PZE-104127853 4 212785374 PZE-110080467 10 134211006

Table 3

Association of SNP loci with kernel rows per ear"

SNP 染色体
Chr.
物理位置
Position
P
P-value (×10-4)
最小等位基因频率
Minimum allele frequency
PZE-102049428 2 27586143 0.83 0.22
SYN29936 3 214728752 0.79 0.53
SYN25713 4 218657640 0.50 0.39
PZE-104012465 4 10671690 0.95 0.39
PZE-105068275 5 70167652 0.38 0.50
SYN35408 5 64502995 0.64 0.53
ZM013904-0312 5 64757602 0.64 0.53
PZE-105060180 5 58448124 0.80 0.44
PZE-106105143 6 155807238 0.29 0.42
PUT-163a-60355888-2779 6 30864359 0.32 0.61
PUT-163a-60355888-2773 6 30864423 0.32 0.61
SYN36577 7 9216854 0.53 0.67
SYN36527 8 166695438 0.72 0.17
SYN36532 8 166695690 0.72 0.83
PZE-108065598 8 115805296 0.89 0.33
PZE-109004718 9 5289730 0.54 0.31

Fig. 4

Kernel rows per ear related QTN"

Table 4

Association of SNP loci with ear length"

SNP 染色体
Chr.
物理位置
Position
P
P-value (×10-4)
最小等位基因频率
Minimum allele frequency
SYN28790 1 198085193 3.55 0.56
PZE-102089207 2 89322082 3.55 0.83
PZE-102089216 2 89350485 7.42 0.17
PZE-102094273 2 103594813 7.42 0.28
PZE-103146876 3 199472604 5.85 0.64
PZE-105143697 5 196993540 6.06 0.22
SYN2938 5 212502760 2.47 0.44
PZE-105181391 5 215066204 8.77 0.22
SYN19052 7 125475003 6.64 0.78
SYN10053 8 1816317 7.98 0.39
PZA-000908002 8 99959553 2.84 0.44
PZE-108076469 8 130589109 3.55 0.83
PZE-109008801 9 9401106 7.42 0.44

Fig. 5

Ear length related QTN"

[1] 陈泽辉 . 贵州玉米育种. 贵阳: 贵州科技出版社, 2011. pp 100-130.
Chen Z H. Maize Breeding in Guizhou. Guiyang: Guizhou Science and Technology Publishing House, 2011. pp 100-130(in Chinese).
[2] Vasal S K, Srinivasan G, Crossa J, Beck D L . Heterosis and combining ability of CIMMYT's subtropical and temperate early- maturity maize germplasm. Crop Sci, 1992,32:884-890.
doi: 10.2135/cropsci1992.0011183X003200040010x
[3] 陈泽辉, 祝云芳, 王安贵, 郭向阳, 邬成 . 玉米Tuxpeno和Suwan种质的改良研究. 贵州农业科学, 2010,38(2):1-4.
Chen Z H, Zhu Y F, Wang A G, Guo X Y, Wu C . Improvement of Tuxpeno and Suwan germplasm in maize. Guizhou Agric Sci, 2010,38(2):1-4 (in Chinese with English abstract).
[4] 陈泽辉, 高翔, 祝云芳 . Suwan与我国四大玉米种质的配合力和杂种优势分析. 玉米科学, 2005,13(1):5-9.
Chen Z H, Gao X, Zhu Y F . Study on the combining ability and heterosis between Suwan and four major maize germplasm of China. J Maize Sci, 2005,13(1):5-9 (in Chinese with English abstract).
[5] 胡学爱 . 玉米新品种——雅玉2号. 农业科技通讯, 1993, ( 8):39.
Hu X A . New maize cultivars—Yayu No.2. Bull Agric Sci Technol, 1993, ( 8):39 (in Chinese).
[6] 柏光晓, 任洪 . 适宜西南山区的高产优质多抗玉米杂交种贵单8号选育研究. 玉米科学, 2007,15(增刊1):27-29.
Bai G X, Ren H . Breeding study of high yield, good quality and high resistance corn hybrid vareity Guidan No.8. J Maize Sci, 2007,15(suppl 1):27-29 (in Chinese with English abstract).
[7] 祝云芳, 陈泽辉, 任洪, 王安贵, 郭向阳 . 国审玉米新品种金玉506的选育及应用. 农业科技通讯, 2014, ( 9):176-178.
Zhu Y F, Chen Z H, Ren H, Wang A G, Guo X Y . Breeding and application of a new country trial maize cultivars Jinyu 506. Bull Agric Sci Technol, 2014, ( 9):176-178 (in Chinese).
[8] 黄吉美 . 会单4号制种技术. 作物杂志, 1996, ( 1):12.
Huang J M . Seed production technology of Huidan No. 4. Crops, 1996, ( 1):12 (in Chinese).
[9] 兰进好, 李新海, 高树仁, 张宝石, 张世煌 . 不同生态环境下玉米产量性状QTL分析. 作物学报, 2005,31:1253-1259.
Lan J H, Li X H, Gao S R, Zhang B S, Zhang S H . QTL analysis of yield components in maize under different environments. Acta Agron Sin, 2005,31:1253-1259 (in Chinese with English abstract).
[10] 吴迅 . 玉米重要自交系的遗传特征鉴定与株型性状关联分析. 四川农业大学博士学位论文, 四川成都, 2013.
Wu X . Genetic Characterization of Important Maize Inbred Lines and Association Mapping of Plant Architecture-related Traits. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2013 (in Chinese with English abstract).
[11] Yang C, Liu J, Rong T Z . Detection of quantitative trait loci for ear row number in F2 populations of maize. Genet Mol Res Gmr, 2015, 14:14229.
[12] 杨文鹏, 关琦, 杨留启, 王伟, 张文龙, 祝云芳, 潘敏娜, 沈建华, 赵致 . 贵州70份玉米自交系的SSR标记遗传多样性及其杂种优势群分析. 植物遗传资源学报, 2011,12:241-248.
Yang W P, Guan Q, Yang L Q, Wang W, Zhang W L, Zhu Y F, Pan M N, Shen J H, Zhao Z . Genetic diversity and heterotic group of 70 maize inbred lines in Guizhou by SSR marker. J Plant Genet Resour, 2011,12:241-248 (in Chinese with English abstract).
[13] 闫飞燕, 范继征, 周锦国, 程伟东, 石达金, 钟昌松, 覃兰秋, 孔祥林 . 12个不同玉米热带种质比例群体的产量配合力效应及杂种优势分析. 西南农业学报, 2011,24:471-477.
Yan F Y, Fan J Z, Zhou J G, Cheng W D, Shi D J, Zhong C S, Qin L Q, Kong X L . Combining ability and heterosis of 12 different kinds of tropic maize populations. Southwest China J Agric Sci, 2011,24:471-477 (in Chinese with English abstract).
[14] 番兴明, 谭静, 杨峻芸, 刘峰, 黄必华, 黄云霄 . 外来热带、亚热带玉米自交系与温带玉米自交系产量配合力分析及其遗传关系的研究. 中国农业科学, 2002,35:743-749.
Fan X M, Tan J, Yang J Y, Liu F, Huang B H, Huang Y X . Study on yield combining ability and genetic relationship between exotic tropical, subtropical maize inbreds and domestic temperate inbreds. Sci Agric Sin, 2002,35:743-749 (in Chinese with English abstract).
[15] Zhang X, Zhang H, Li L J, Lan H, Ren Z Y, Liu D, Wu L, Liu H L, Jaqueth J, Li B L, Pan G T, Gao S B . Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genomics, 2016,17:697.
doi: 10.1186/s12864-016-3041-3 pmid: 5007717
[16] 陈泽辉, 祝云芳, 王安贵, 郭向阳, 赵丽, 胡兴 . 玉米Tuxpeno-Reid和Suwan-Lancaster合成群体相互轮回选择效果及杂种优势研究. 玉米科学, 2013, ( 4):1-5.
Chen Z H, Zhu Y F, Wang A G, Guo X Y, Zhao L, Hu X . Two maize populations of Tuxpeno-Reid and Suwan-Lancaster by reciprocal recurrent selection and the heterosis. J Maize Sci, 2013, ( 4):1-5 (in Chinese with English abstract).
[17] 石云素 . 玉米种质资源描述规范和数据标准 . 中国农业出版社, 2006. p 62.
Shi Y S. Descriptors and Data Standard for Maize (Zea mays L.). Beijing: China Agriculture Press, 2006. p 62 (in Chinese).
[18] Publishing S. Base SAS 9. 2 Procedures Guide: Statistical Procedures. SAS Publishing, 2008.
[19] Wu X, Li Y, Shi Y, Song Y, Wang T, Huang Y, Li Y . Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theor Appl Genet, 2014,127:621-631.
doi: 10.1007/s00122-013-2246-y pmid: 24343198
[20] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S . TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 20320202020202020202020
[21] 陈泽辉 . 群体与数量遗传学. 贵阳: 贵州科技出版社, 2009. pp 28-53.
Chen Z H. Population and Quantitative Genetics. Guiyang: Guizhou Science and Technology Publishing House, 2009. pp 28-53(in Chinese).
雍洪军, 张芳军, 张德贵, 张晓聪, 李明顺, 潘光堂, 张世煌, 李新海, 荣廷昭 . 10个玉米群体改良杂交种吉单261的育种利用分析. 核农学报, 2014,28:765-771.
Yong H J, Zhang F J, Zhang D G, Zhang X C, Li M S, Pan G T, Zhang S H, Li X H, Rong Y Z . Analysis on breeding potential of ten populations to improve a Chinese maize hybrid ‘Jidan 261’. J Nucl Agric Sci, 2014,28:765-771 (in Chinese with English abstract).
[22] 李芦江, 陈文生, 杨克诚, 潘光堂, 荣廷昭 . 控制双亲混合选择对2个玉米窄基群体主要性状的改良效果. 中国农业科学, 2010,43:4775-4786.
Li L J, Chen W S, Yang K C, Pan G T, Rong T Z . Effects of biparental mass selection on two narrow-base maize populations. Sci Agric Sin, 2010,43:4775-4786 (in Chinese with English abstract).
[23] Lu M, Xie C X, Li X H, Hao Z F, Li M S, Weng J F, Zhang D G, Bai L, Zhang S H . Mapping of quantitative trait loci for kernel row number in maize across seven environments. Mol Breed, 2011,28:143-152.
doi: 10.1007/s11032-010-9468-3
[24] Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S . Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006,149:121-131.
doi: 10.1007/s10681-005-9060-9
[25] 王辉, 梁前进, 胡小娇, 李坤, 黄长玲, 王琪, 何文昭, 王红武, 刘志芳 . 不同密度下玉米穗部性状的QTL分析. 作物学报, 2016,42:1592-1600.
Wang H, Liang Q J, Hu X J, Li K, Huang C L, Wang Q, He W Z, Wang H W, Liu Z F . QTL mapping for ear architectural traits under three plant densities in maize. Acta Agron Sin, 2016,42:1592-1600 (in Chinese with English abstract).
[26] Zhou G, Zhu Q, Yang G, Huang J, Cheng S, Yue B, Zhang Z . qEL7.2 is a pleiotropic QTL for kernel number per row, ear length and ear weight in maize( Zea mays L.). Euphytica, 2015,203:429-436.
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!