Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (10): 1522-1534.doi: 10.3724/SP.J.1006.2019.84130

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Enhancing CRISPR/Cas9 genomic editing efficiency based on optimization of sgRNA of Gossypium barbadense L.

LI Ji-Yang1,2,HU Yan1,YAO Rui2,DAI Pei-Hong1,*(),LIU Xiao-Dong1,*()   

  1. 1Agricultural College, Xinjiang Agricultural University / Key Laboratory of Agricultural Biotechnology, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Life Sciences College, Shihezi University, Shihezi 832000, Xinjiang, China
  • Received:2018-10-16 Accepted:2019-05-12 Online:2019-10-12 Published:2019-09-10
  • Contact: Pei-Hong DAI,Xiao-Dong LIU E-mail:40836520@qq.com;xiaodongliu75@aliyun.com
  • Supported by:
    This study was supported by the Nanjing Agricultural University-Xinjiang Agricultural University Joint Fund Project(KYYJ201603);Xinjiang Agricultural University Crop Science Key Discipline Development Fund Project.

Abstract:

The CRISPR/Cas9 genome editing system has been established in many crops. The advantages of its directional creation of mutants are increasingly favored by researchers. However, the CRISPR/Cas9 genome editing technology targets the editing of the target gene and also triggers off-target effects at different frequencies, which determine the reliability of the genome editing system. This study was based on the previous CRISPR/Cas9 genome editing system established in the island-cotton somatic cells. Edit the vector by constructing different codon optimization methods for Cas9, different numbers of PAM sites and different target sites, and the difference in editing efficiency and off-target effect were analyzed and compared. There was no significant difference in editing effects and off-target effects caused by Cas9-edited vectors with different optimal codons. The partially double-sgRNA had significantly higher editing efficiency and significantly lower off-target efficiency than the single sgRNA; the editing efficiency of the transformed No shift sgRNA target sequence was significantly higher than that of the Shift sgRNA and the former had a significant decrease in off-target efficiency relative to the latter. Therefore, using No shift sgRNA type target sequence can effectively improve the editing efficiency and significantly reduce the off-target efficiency, thus laying a theoretical foundation for optimizing the CRISPR/Cas9 mediated island cotton genome editing system and accurately and efficiently creating island cotton functional gene mutants in the future.

Key words: cotton, CRISPR/Cas9, editing efficiency, off-target efficiency, sgRNA type

Table 1

Primers used in this study"

序列名称
Sequence name
序列
Sequence (5'-3')
PAM位点序列
PAM site sequence
Shift GbU6-4PERA1-sg2F GATTGTCTTTCGCAGAATGCATGA CGG
Shift GbU6-4PERA1-sg2R AAACTCATGCATTCTGCGAAAGAC
GbU6-4PERA1-sg2F GATTGTTCGCAGAATGCATGACGG TGG
GbU6-4PERA1-sg2R AAACCCGTCATGCATTCTGCGAAC
GbU6-5PGGB-sg1F AAGTGTGTCGAAGTACTGAAGCGG CGG
GbU6-5PGGB-sg1R AAACCCGCTTCAGTACTTCGACAC
GbU6-4PGGB-sg2F GATTGTCTTTCAGTCTTATGATGG TGG
GbU6-4PGGB-sg2R AAACCCATCATAAGACTGAAAGAC
Shift GbU6-5PGGB-sg1F AAGTGCTCTGTCGAAGTACTGAAG CGG
Shift GbU6-5PGGB-sg1R AAACCTTCAGTACTTCGACAGAGC
Shift GbU6-4PGGB-sg2F GATTGTGTTCTTTCAGTCTTATGA TGG
Shift GbU6-4PGGB-sg2R AAACTCATAAGACTGAAAGAACAC
Test GGB-sg1F AAGTGGAAAGAGAATGGCGAC
Test GGB-sg1R AGCTAATTCGCTATTGCAATCAATC
Test GGB-sgR ACCATGTGATTCTAAACCAGG
Test ERA1-sg1F TAATAGGTGGTCAGGTTATGC
Test ERA1-sg1R AGGAGACTTGCAACCTGATC
FJ-1F GTAAAACGACGGCCAG
FJ-1R CAGGAAACAGCTATGAC
FJ-2F TAAACTGAAGGCGGGAAACG
FJ-2R CGGTTCTGTCAGTTCCAAACG

Fig. 1

No shift sgRNA and Shift sgRNA target sequence characteristics and mode of action The red box identifies the PAM site for the action of CRISPR/Cas9."

Fig. 2

Sketch map of genome editing structure of cotton (Gossypium barbadense L.) A: editing vector containing Cas9I; B: editing vector containing Cas9II."

Table 2

Information of off target sequence"

脱靶序列名称
Name for sequence of off target
序列
Sequence (5°-3°)
预测脱靶率
Predict the off target rate
OT-GGB-sgRNA1-1 GGTCCAAGGACTGAAGCTGTGG 0.311
OT-GGB-sgRNA1-2 GGTTGAAGTAGTAAAGCGGAGG 0.177
OT-Shift GGB-sgRNA1-1 TCCAGTCGAAATACTGAAGAGG 0.408
OT-Shift GGB-sgRNA1-2 CTCTGTTGATGAACTGATGGGG 0.287

Table 3

Information of off target sequence primer"

序列名称
Sequence name
序列
Sequence (5°-3°)
OTtest-G1-1F CCTTGAAAGTTGCTTCCGAC
OTtest-G1-1R GAAACTGCCTTTTTTGACACC
OTtest-G1-2F CGAAAAATGGTTAGTGGTGAC
OTtest-G1-2R GTGGATGTTACTGTAGCAATG
OTtest-SG1-1F AGAGGACCAAACACATTAACC
OTtest-SG1-1R TTTGGGGGAGAGCACTTTTG
OTtest-SG1-2F ATCACCTTGCTACTCTTTCTG
OTtest-SG1-2R GTTTAGTTGACCAAGCATCTC

Fig. 3

Result of gene editing vector restriction enzyme digestion of Gossypium barbadense L. A: GbU6-5P-GGB-sgRNA 1 editing vector digestion test results; M1 is 1 kb plus marker. B: GbU6-5P::GGB-sgRNA1-GbU6- 4P::GGB-sgRNA2 and GbU6-5P::GGB-sgRNA1-GbU6-4P::ERA1- sgRNA2 edit vector restriction test results; M2 is 2 kb plus II marker."

Fig. 4

Protoplast preparation and transformation results of Gossypium barbadense L. A: microscopic examination of Gossypium barbadense L. protoplast before transformation; B: after protoplast microscopy results transformation of G. barbadense GbU6-5P::GGB-sgRNA1-GbU6-4P::GGB-sgRNA2-Cas9I vector. Bar = 40 μm."

Fig. 5

Transformation of different target sequence editing effect test results of Gossypium barbadense L. A: 1 is the result of direct PCR before transformation of GbU6-5P-GGB-sgRNA1-Cas9I vector, 2 is PCR amplification after transformation of GbU6-5P-GGB-sgRNA1-Cas9I vector As a result, 3 was obtained by direct PCR amplification before transformation of GbU6-5P-sgRNA1- Cas9I vector and 4 was PCR amplification after transformation with GbU6-5P-sgRNA1-Cas9I vector. B: 1 was transformed with GbU6- 5P::GGB-sgRNA1-GbU6-4P::GGB-sgRNA2-Cas9I direct PCR amplification results, 2 for the transformation of GbU6-5P-sgRNA1-GbU6- 4P-sgRNA2-Cas9I direct PCR amplification results. C: G1 and E1 are the results of direct PCR before transformation of GbU6-5P:: GGB-sgRNA1-GbU6-4P::ERA1-sgRNA2-Cas9I, G2 and E2 are the results of transformation of GbU6-5P::GGB-sgRNA1-GbU6-4P::ERA1- sgRNA2-Cas9 digestion after PCR amplification results, G3 and E3 to transform GbU6-5P-sgRNA1-GbU6-4P-sgRNA2-Cas9I digestion before direct PCR amplification results, G4 and E4 to transform GbU6-5P-sgRNA1-PCR amplification results after GbU6-4P-sgRNA2-Cas9 digestion. M1 is 1 kb plus marker, M2 is 2 kb plus II marker."

Fig. 6

Sequencing results of base mutation of different types of target sequences of Gossypium barbadense L. A: Transformation of GbU6-5P-GGB-sgRNA 1-Cas9I vector target site editing effect sequencing detection results; B: Transformation GbU6- 5P::GGB-sgRNA1-GbU6-4P::ERA1-sgRNA2-Cas9I vector GGB target site editing effect sequencing detection results; C: GbU6-5P::GGB- sgRNA1-GbU6-4P::ERA1-sgRNA2-Cas9I vector ERA1 target site editing sequencing results; D: transformation GbU6-5P::GGB-sgRNA1-GbU6- 4P::GGB-sgRNA2-Cas9I vector GGB-sgRNA2 target site editing effect sequencing test results; E: transformation GbU6-5P::GGB-sgRNA1-GbU6- 4P::GGB-sgRNA2-Cas9I vector GGB-sgRNA1 target site editing effect sequencing test results. The red box is the location of the PAM site."

Fig. 7

Sequencing peak map of base mutation of different types of target sequences of Gossypium barbadense L. A: baseline mutation map of genomes transformed with GbU6-5P-GGB-sgRNA1-Cas9I target sequence; B: transformation of GbU6- 5P::GGB-sgRNA1-GbU6-4P::ERA1-sgRNA2-Cas9I target sequence; C: baseline mutation sequencing of the genome of transformed GbU6- 5P::GGB-sgRNA1-GbU6-4P::GGB-sgRNA2-Cas9I target sequence."

Table 4

Statistical results of editing efficiency of different target sequences"

转化载体名称
Conversion carrier name
一个位点碱基突变个数
A base muta- tion number
2个位点同时突变个数
Number of mutations for two sites at the same time
突变率
Mutation rate
sgRNA1位点
sgRNA1 site
sgRNA2位点
sgRNA2 site
sgRNA1位点sgRNA1 site sgRNA2位点sgRNA2 site
GGB-sgRNA1 12/95 0.126
Shift GGB-sgRNA1 10/95 0.105
GGB-sgRNA1-ERA1-sgRNA2 15/70 15/70 0.214 0.214
Shift GGB-sgRNA1-ERA1-sgRNA2 11/70 10/70 0.157 0.143
GGB-sgRNA1-GGB-sgRNA2 9/57 7/57 0.157 0.123
Shift GGB-sgRNA1-GGB-sgRNA2 7/60 5/60 0.117 0.083

Fig. 8

Semi-quantitative detection of protoplast Cas9 and corresponding sgRNA in different types of target sequences transformed in Gossypium barbadense L. 1 and 2 is transformed GbU6-5P-GGB-sgRNA1-Cas9I edit vector and Control edit vector were detected GGB-sgRNA1, 3 and 4 is transformed GbU6-5P-GGB-sgRNA1-GbU6-4P::ERA1-sgRNA1- Cas9I edit vector were detected GGB-sgRNA1, ERA1-sgRNA2, 5 and 6 is transformed GbU6-5P-GGB-sgRNA1-GbU6-4P::GGB- sgRNA2-Cas9I edit vector were detected GGB-sgRNA1, GGB- sgRNA2, 7 is transformed GbU6-5P-sgRNA1-4P-sgRNA1-Cas9I control edit vector were detected GGB-sgRNA1."

Fig. 9

Off target sequence amplification test of Gossypium barbadense L. Transform No shift sgRNA type target sequence: 1 and 2 is transformed GbU6-5P-GGB-sgRNA1-Cas9I edit vector and Control edit vector, 3 and 4 is transformed GbU6-5P-GGB-sgRNA1-GbU6- 4P::ERA1-sgRNA1-Cas9I edit vector and Control edit vector, 5 and 6 is transformed GbU6-5P-GGB-sgRNA1-GbU6-4P::GGB-sgRNA2- Cas9I edit vector and Control edit vector. Transform Shift sgRNA type target sequence: 1 and 2 is transformed Shift GbU6-5P- GGB-sgRNA1-Cas9I edit vector and Control edit vector, 3 and 4 is transformed Shift GbU6-5P-GGB-sgRNA1-GbU6-4P::ERA1-sgRNA1- Cas9I edit vector and Control edit vector, 5 and 6 is transformed Shift GbU6-5P-GGB-sgRNA1-GbU6-4P::GGB-sgRNA2-Cas9I edit vector and Control edit vector."

Fig. 10

Off target sequence mutation detection of Gossypium barbadense L. A: OTtest-SG1-2 primer detection; 1 is transformed Shift GbU6- 5P-GGB-sgRNA1-Cas9I edit vector, 2 is transformed Shift GbU6- 5P-GGB-sgRNA1-GbU6-4P::ERA1-sgRNA1-Cas9I edit vector, 3 is transformed Shift GbU6-5P-GGB-sgRNA1-GbU6-4P::GGB-sgRNA2- Cas9I edit vector. B:OTtest-G1-2 primer detection; 1 is transformed GbU6-5P-GGB-sgRNA1-Cas9I edit vector, 2 is transformed GbU6- 5P-GGB-sgRNA1-GbU6-4P::ERA1-sgRNA1-Cas9I edit vector, 3 is transformed GbU6-5P-GGB-sgRNA1-GbU6-4P::GGB-sgRNA2-Cas9I edit vector. C: OTtest-SG1-2 primer detection; 1 is transformed Shift GbU6-5P-GGB-sgRNA1-Cas9I edit vector, 2 is transformed Shift GbU6-5P-GGB-sgRNA1-GbU6-4P::ERA1-sgRNA1-Cas9I edit vector, 3 is transformed Shift GbU6-5P-GGB-sgRNA1-GbU6-4P::GGB-sgRNA2- Cas9I ditvector."

Fig. 11

Off target sequence sequencing peak map of Gossypium barbadense L. A, B, and C are OTtest-SG1-2, OTtest-G1-2, and OTtest-SG1-1 primers to transform the sequencing result of the target fragment amplified by the corresponding vector in the figure below, respectively. The red box identifies the base mutation site."

Table 5

Statistics of off-target efficiency of different target sequences"

转化载体名称
Conversion carrier name
脱靶序列检测Detection of off-target sequences
OTtest-G1-1 OTtest-SG1-1 OTtest-SG1-2
GGB-sgRNA1 6/50
Shift GGB-sgRNA1 0 18/50
GGB-sgRNA1-ERA1-sgRNA2 0
Shift GGB-sgRNA1-ERA1-sgRNA2 0 6/50
GGB-sgRNA1-GGB-sgRNA2 0
Shift GGB-sgRNA1-GGB-sgRNA2 0 6/50
[1] Feng Z, Zhang B, Ding W, Liu X, Yang D, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J . Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013,23:1229-1232.
[2] Wang Z P, Xing H L, Dong L, Zhang H, Han C, Wang X, Chen Q . Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol, 2015,16:144. doi: 10.1186/s13059-015-0715-0.
[3] Kleinstiver B P, Pattanayak V, Prew M S, Tsai S Q, Nguyen N T, Zheng Z L, Joung J K . High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016,529:490-495.
[4] Zhang Q, Xing H L, Wang Z P . Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol Biol, 2018,96:445-456.
[5] Slaymaker I M, Gao L, Zetsche B . Rationally engineered Cas9 nucleases with improved specificity. Science, 2016,351:84-88.
[6] 谢胜松, 张懿, 张利生, 李广磊, 赵长志, 倪攀, 赵书红 . CRISPR/Cas9系统中sgRNA设计与脱靶效应评估. 遗传, 2015,37:1125-1136.
Xie S S, Zhang Y, Zhang L S, Li G L, Zhao C Z, Ni P , Zhao S H. sgRNA design and off-target effect evaluation in CRISPR/Cas9 system. Genetic, 2015,37:1125-1136 (in Chinese with English abstract).
[7] 郑武, 谷峰 . CRISPR/Cas9的应用及脱靶效应研究进展. 遗传, 2015,37:1003-1010.
Zheng W, Gu F . Progress in the application and off-target effects of CRISPR/Cas9. Genetic, 2015,37:1003-1010 (in Chinese with English abstract).
[8] 单奇伟, 高彩霞 . 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015,37:953-973.
Shan Q W, Gao C X . The latest research progress in plant genome editing and derivative technology. Genetic, 2015,37:953-973 (in Chinese with English abstract).
[9] 郭文江 . 锌指核酸酶介导的基因打靶阳性细胞脱靶位点分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2013.
Guo W J . Zinc Finger Nuclease-mediated Gene Targeting Target Cell Off-target Site Analysis. MS Thesis of Northwest A&F University, Yangling, China, 2013 (in Chinese with English abstract).
[10] Qi J, Dong Z, Shi Y, Wang X, Qin Y, Wang Y, Liu D . NgAgo- based fabp11a gene knockdown causes eye developmental defects in zebrafish. Cell Res, 2016,26:1349-1352.
[11] Sander J D, Zaback P, Joung J K, Voytas D F, Dobbs D . Zinc Finger Targeter ( ZiFiT): an engineered zinc finger/target site design tool. Nucl Acids Res, 2007,35:W599-W605.
[12] Cho S W, Kim S, Kim Y, Kweon J, Kim H S, Bae S, Kim J . Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 2014,24:132-141.
[13] Ma Y, Yu L, Pan S, Gao S, Chen W, Zhang X, Dong W, Li J, Zhou R, Huang L, Han Y, Zhang L, Zhang L . CRISPR/Cas9 mediated targeting of the Rosa26 locus produces Cre reporter rat strains for monitoring Cre-loxP mediated lineage tracing. FEBS J, 2017,284:3262-3277.
[14] Bi Y, Hua Z, Liu X, Hua W, Ren H, Xiao H, Zhang L, Li L, Wang Z, Laible G, Wang Y, Dong F, Zheng X . Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep, 2016,6:31729. doi: 10.1038/srep31729.
[15] Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339:819-823.
[16] Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R . TALEN or Cas9- rapid, efficient and specific choices for genome modifications. J Genet Genomics, 2013,40:281-289.
[17] Chen Y, Liu X, Zhang Y, Li D, Lui K O, Ding Q . A self-restricted CRISPR system to reduce off-target effects. Mol Ther, 2016,24:1508-1510.
[18] Feng C, Su H, Bai H, Liu Y, Guo X, Liu C, Zhang J, Yuan J, Birchler J A, Han F . High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J, 2018,16:1848-1857.
[19] Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M . RNA-guided human genome engineering via Cas9. Science, 2013,339:823-826.
[20] Lee C M, Cradick T J, Bao G . The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther, 2016,24:645-654.
[21] Ran F A, Cong L, Yan W X, Scott D A, Gootenberg J S, Kriz A J, Zetsche B, Shalem O, Wu X, Makarova K S, Koonin E V, Sharp P A, Zhang F . In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015,520:186-191.
[22] Müller M, Lee C M, Gasiunas G, Davis T H, Cradick T J, Siksnys V, Bao G, Cathomen T, Mussolino C . Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther, 2016,24:636-644.
[23] Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro E M, Winblad N, Choudhury S R, Abudayyeh O, Gootenberg J S, Wu W, Scott D A . Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol, 2017,35:31-34.
[24] Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, Lorenzin F, Prandi D, Romanel A, Demichelis F, Inga A, Cereseto A . A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol, 2018,36:265-271.
[25] Chen J S, Dagdas Y S, Kleinstiver B P, Welch M, Sousa A, Harrington L B, Sternberg S H, Joung J K, Yildiz A, Doudna J A . Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature, 2017,550:407-410.
[26] Lee J K, Jeong E, Lee J, Jung M, Shin E, Kim Y, Lee K, Jung I, Kim D, Kim S, Kim J . Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun, 2018,9:3048. doi: 10.1038/s41467-018-05477-x.
[27] Farboud B, Meyer B J . Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics, 2015,199:959-971.
[28] Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, Zhang J, Liu H, Qin L, Rui H, Li B, Lindsey K, Daniell H, Jin S, Zhang X . Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnol J, 2018. doi: 10.1111/pbi.13020.
[29] Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, Deng J, Tan J, Zhang Q, Tu L, Daniell H, Jin S, Zhang X . High efficient multisites genome editing in allotetraploid cotton ( Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J, 2018,16:137-150.
[30] 李继洋, 雷建峰, 代培红, 姚瑞, 曲延英, 陈全家, 李月, 刘晓东 . 基于棉花U6 启动子的海岛棉CRISPR/Cas9基因组编辑体系的建立. 作物学报, 2018,44:227-235.
Li J Y, Lei J F, Dai P H, Yao R, Qu Y Y, Chen Q J, Li Y, Li X D . Establishment of an island cotton based on the cotton U6 promoter, CRISPR/Cas9 genome editing system. Acta Agron Sin, 2018,44:227-235 (in Chinese with English abstract).
[31] Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Qiu J, Gao C . Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013,31:686-688.
[32] Lu Y, Chen X, Wu Y, Wang Y, He Y, Wu Y . Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay. PLoS One, 2013,8:e57171.
[33] Farboud B, Meyer B J . Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics, 2015,199:959-971.
[34] Li C, Unver T, Zhang B . A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in cotton ( Gossypium hirsutum L.). Sci Rep, 2017,7:43902. doi: 10.1038/srep43902.
[35] Paul J . GENE by Stel Pavlou. Simon & Schuster. UK: Pocket Books, 2005. pp 125-187.
[36] Wang-Michelitsch J, Michelitsch T M . Cell transformation in tumor-development: a result of accumulation of Misrepairs of DNA through many generations of cells. arXiv preprint ar Xiv. 2015: 1505. 01375.
[1] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[2] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[7] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[8] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[9] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[10] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[11] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[12] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
[13] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
[14] ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437.
[15] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!