Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (6): 1162-1174.doi: 10.3724/SP.J.1006.2021.02052

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode

ZHAO Jie(), LI Shao-Ping, CHENG Shuang, TIAN Jin-Yu, XING Zhi-Peng*(), TAO Yu, ZHOU Lei, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, GAO Hui, WEI Hai-Yan, ZHANG Hong-Cheng*()   

  1. Jiangsu Provincial Key Laboratory of Crop Cultivation and Physiology, Yangzhou University/Jiangsu Collaborative Innovation Center of Modern Industrial Technology for Grain Crops/Rice Industry Engineering Technology Research Institute, Yangzhou 225009, Jiangsu, China
  • Received:2020-07-29 Accepted:2020-12-01 Online:2021-06-12 Published:2021-01-06
  • Contact: XING Zhi-Peng,ZHANG Hong-Cheng E-mail:704428205@qq.com;zpxing@yzu.edu.cn;hczhang@yzu.edu.cn
  • Supported by:
    The Agricultural Science and Technology Innovation and Extension Project of Jiangsu Province, the China Agriculture Research System(CARS-01-27);The earmarked fund for Jiangsu Agricultural Industry Technology System(JATS(2019)444);The Agricultural Technology Independent Innovation Fund of Jiangsu Province(CX(20)1012);The Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Abstract:

In a rice-wheat cropping system, dry direct seeding rice growth was directly affected by harvest dates of the previous crop of wheat, the return of full wheat straw to the field, and the poor quality of tillage and land preparation. A “solo-stalk” cultivation mode with main stem panicles by late sowing dates, large sowing rates and high basic seedlings was commonly used in dry direct seeding. However, the nitrogen fertilizer management of high-quality and high-yield dry direct-seeding rice for the “solo-stalk” cultivation mode was still lacking in systematic research. With high-quality japonica rice Nanjing 9108, 380×104 hm-2 basic seedlings were realized by mechanical dry direct seeding method. The leaf age treatments of 6, 7, 8, 9, and 10 leaf age and nitrogen application amount treatments of 180 and 225 kg hm-2 were designed with accurate quantitative nitrogen management (total nitrogen was 270 kg hm-2, base fertilizer:tiller fertilizer:spike fertilizer = 3.5:3.5:3.0) at basic seedlings of 380×104 and 300×104 hm-2 as the control. Then dry direct seeding rice yield and quality were systematically determined and compared with the control and “solo-stalk” cultural method with nitrogen fertilizer in whole growth duration applied in middle and late tillering stage. The results showed that rice yield showed a trend of first increased and then decreased with nitrogen application at bigger leaf age. Rice yield was significantly higher than other treatments when applying nitrogen fertilizer at the 8-leaf stage, and the yield was further improved with the increase of nitrogen application amount. Compare with the controls, nitrogen fertilizer in whole growth duration of 180 kg N hm-2 applied one time at 8-leaf stage could significantly increase rice yield by 5.10% and 8.65%, and reduced nitrogen fertilizer by 33.3%, whereas nitrogen fertilizer in whole growth duration of 225 kg N hm-2 applied two time at 8-leaf stage and 7 days later could significantly increase rice yield by 7.46% and 11.09%, and reduced the nitrogen by 16.7%. The reason was that, compared with the control, seed setting rate and 1000-grain weight, effective panicle number was significantly increased resulting in the increasing total spikelet amount per hectare and yield on the basis of maintaining larger panicle type. With nitrogen applied at bigger leaf age, the head rice rate, chalkiness and protein content of rice revealed an increasing trend, but the amylose content and taste value of rice showed a decreasing trend. Compare to the two controls, the processing quality of rice with the head rice rate was increased by 0.67%-2.23% with nitrogen fertilizer in whole growth duration applied at 8-leaf age; the appearance quality was improved with the chalkiness decreased by 3.6%-14.5%; the nutrition quality was better with protein content increased by 3.03%-14.08%; the cooking and eating quality showed a tendency of getting better with amylose content decreased by 4.23%-10.95%; and there was no insignificant difference in taste value. In conclusion, nitrogen fertilizer in whole growth duration applied at suitable leaf age in the middle and late tillering stage could improve the quality and increase the yield of dry direct seeding rice under “solo-stalk” cultural method caused by late sowing dates, large sowing rate, and high basic seedlings in a rice-wheat cropping system.

Key words: “solo-stalk” cultivation mode, base fertilizer without nitrogen fertilizer, nitrogen fertilizer in middle and late tillering stage, nitrogen fertilizer management mode, direct seeding rice, yield, quality

Fig. 1

Daily mean temperature (A) and sunshine hours (B) during the growing season in rice from 2018 to 2019"

Table 1

Amount and application stage of fertilizer used in the study (kg hm-2)"

氮肥
水平
N level
基肥
Base fertilizer
分蘖肥
Tiller
fertilizer
叶龄追肥
Fertilization at
leaf age
促花肥
Flower-promoting fertilizer
保花肥
Flower-preserving fertilizer
合计
Total
N P2O5 K2O N N P2O5 K2O N K2O N N P2O5 K2O
N1 22.5 112.5 180 112.5 112.5 180 135 225
N2 22.5 112.5 225 112.5 112.5 225 135 225
CK1 94.5 135 112.5 94.5 40.5 112.5 40.5 270 135 225
CK2 94.5 135 112.5 94.5 40.5 112.5 40.5 270 135 225

Fig. 2

Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield of dry direct seed rice under “solo-stalk” cultivation mode in 2018 and 2019 N1: 180 kg N hm-2; N2: 225 kg N hm-2; L6, L7, L8, L9, and L10 are the five topdressing leaf ages of 6, 7, 8, 9, and 10, respectively. Different lowercase letters indicate significant differences at the 0.05 probability level by LSD test."

Table 2

Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield components of dry direct seed rice under “solo-stalk” cultivation mode"

处理Treatment 基本苗
Basic
seedlings
(×104 hm-2)
有效穗数
Number of
panicle
(×104 hm-2)
每穗粒数
Spikelets
per panicle
群体颖花量
Total spikelet
number
(×108 hm-2)
结实率
Seed setting
rate
(%)
千粒重
1000-grain weight
(g)
氮肥水平
N level
追肥叶龄
Leaf age
N1 L6 381.8 a 409.8 e 85.6 cd 3.51 cd 95.66 a 27.2 a
L7 381.9 a 428.6 d 88.4 bc 3.78 c 93.85 ab 27.4 a
L8 382.0 a 455.3 b 93.7 a 4.29 ab 92.85 bc 27.4 a
L9 382.4 a 436.5 cd 83.5 d 3.69 cd 91.66 c 27.2 a
L10 382.8 a 446.2 bc 75.3 e 3.45 d 92.72 bc 27.1 a
N2 L6 382.1 a 429.3 d 88.0 bc 3.69 cd 95.46 a 27.3 a
L7 381.5 a 450.2 b 90.4 ab 4.09 b 94.17 ab 27.1 a
L8 383.2 a 474.2 a 94.5 a 4.54 a 92.59 bc 27.3 a
L9 382.3 a 449.8 b 82.0 d 3.79 c 91.31 c 27.2 a
L10 382.4 a 454.2 b 75.0 e 3.55 cd 92.21 bc 27.2 a
F-value
N 0.23NS 147.00** 1.25NS 32.28* 0.22NS 0.05NS
L 0.70NS 28.14** 59.11** 32.17** 25.96** 0.15NS
N×L 0.48NS 0.79NS 0.76NS 0.55NS 0.26NS 0.13NS
CK1 382.1 419.2 91.6 3.85 90.73 27.2
CK2 303.5 372.7 104.7 3.92 91.52 27.2

Table 3

Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stages on panicle structure of dry direct seed rice under “solo-stalk” cultural code"

处理Treatment 整穗Panicle 一次枝梗Primary branches 二次枝梗Secondary branches
氮肥水平
N level
追肥叶龄
Leaf age
穗长
PL (cm)
着粒密度
GD
(grain cm-1)
单穗重
GWPP (g)
一二次枝梗比
RN
一二次枝梗总粒数比
RTG
总粒数
TG
枝梗数
NB
单枝梗着粒数
GPB
总粒数
TG
结实率
SSR (%)
枝梗数
NB
单枝梗着粒数
GPB
总粒数
TG
结实率
SSR (%)
N1 L6 13.8 ab 6.21 de 2.17 c 0.75 a 1.53 a 85.6 c 9.0 a 5.72 a 51.7 a 97.7 b 12.1 de 2.81 b 33.9 d 88.0 b
L7 13.7 ab 6.44 bc 2.20 bc 0.64 cd 1.34 bc 88.4 b 8.5 b 5.94 a 50.5 a 97.4 b 13.3 bc 2.85 b 37.9 bc 87.0 c
L8 13.6 b 6.87 a 2.36 a 0.56 f 1.16 de 93.7 a 8.4 b 6.00 a 50.2 a 96.6 c 14.9 a 2.91 ab 43.5 a 85.9 d
L9 13.7 ab 6.09 e 2.11 d 0.61 e 1.28 cde 83.7 cd 7.8 c 5.99 a 46.9 b 96.6 c 13.0 c 2.84 b 36.8 bcd 87.7 b
L10 13.9 ab 5.39 g 1.91 e 0.74 ab 1.55 a 75.2 e 7.7 c 5.96 a 45.7 bc 97.0 c 10.4 g 2.84 b 29.5 e 88.2 b
N2 L6 14.0 a 6.29 cd 2.20 bc 0.73 ab 1.44 abc 88.1 b 9.1 a 5.74 a 52.0 a 98.3 a 12.4 d 2.92 ab 36.2 cd 88.2 b
L7 13.9 ab 6.49 b 2.24 b 0.63 de 1.28 cde 90.0 b 8.4 b 5.87 a 50.6 a 97.6 b 13.4 b 2.94 ab 39.5 b 86.4 cd
L8 13.9 ab 6.86 a 2.38 a 0.57 f 1.11 e 95.1 a 8.3 b 6.02 a 50.1 a 97.5 b 14.6 a 3.09 a 45.1 a 84.9 e
L9 13.9 ab 5.92 f 2.07 d 0.66 c 1.32 bcd 82.2 d 7.8 c 5.99 a 46.6 bc 97.6 b 11.8 e 3.01 ab 35.6 cd 84.6 e
L10 13.9 ab 5.40 g 1.93 e 0.71 b 1.45 ab 74.8 e 7.7 c 5.73 a 44.3 c 97.8 b 10.8 f 2.82 b 30.6 e 89.2 a
F-value
N 9.9NS 1.27NS 9.15NS 0.55NS 2.59NS 5.14NS 0.13NS 0.25NS 0.27NS 80.18* 4.07NS 8.07NS 3.14NS 171.26**
L 0.88NS 147.44** 183.93** 109.43** 29.80** 169.64** 57.35** 5.97** 28.35** 33.59** 339.47** 3.77* 105.76** 73.40**
N×L 0.96NS 1.2NS 1.41NS 4.99** 0.96NS 2.2NS 0.14NS 1.32NS 0.40NS 6.44** 14.76** 1.37NS 1.71NS 22.74**
CK1 13.9 6.60 2.22 0.67 1.42 91.7 9.0 5.99 53.8 94.05 13.4 2.83 37.9 85.04
CK2 14.2 7.37 2.48 0.63 1.31 104.7 9.9 6.00 59.3 95.28 15.7 2.90 45.4 86.51

Table 4

Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stages on dynamics of tiller of dry direct seed rice under “solo-stalk” cultivation mode (×104 hm-2)"

处理Treatment 六叶期
6-leaf stage
十叶期
10-leaf stage
拔节期
Jointing stage
抽穗期
Heading stage
成熟期
Maturity stage
氮肥水平
N level
追肥叶龄
Leaf age
N1 L6 426.7 a 766.7 a 574.7 d 428.0 e 409.8 e
L7 423.4 a 566.0 b 689.4 ab 474.0 bc 428.6 d
L8 420.0 a 541.4 b 626.0 cd 489.4 b 455.3 b
L9 420.7 a 542.7 b 578.0 d 458.7 cd 436.5 cd
L10 421.4 a 542.0 b 575.4 d 449.4 cde 446.2 bc
N2 L6 425.4 a 801.4 a 601.4 cd 434.7 de 429.3 d
L7 423.4 a 568.0 b 724.0 a 490.7 b 450.2 b
L8 420.0 a 542.0 b 646.7 bc 514.7 a 474.2 a
L9 422.0 a 538.7 b 581.4 d 470.7 bc 449.8 b
L10 426.7 a 544.0 b 583.4 d 456.0 cd 454.2 b
F-value
N 0.84NS 1.28NS 25.69* 29.23* 147.00**
L 0.79NS 84.57** 61.33** 22.29** 28.14**
N×L 0.25NS 0.46NS 0.86NS 0.47NS 0.79NS
CK1 529.4 679.7 545.4 430.0 419.2
CK2 340.7 556.0 393.4 381.4 372.7

Fig. 3

Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stages on percentage of productive tillers and stems of dry direct seed rice under “solo-stalk” cultivation mode Treatments and abbreviations are the same as those given in Fig. 2. Data followed by different lowercase letters indicate significant differences at the 0.05 probability level by LSD test."

Table 5

Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stages on processing and appearance quality of dry direct seed rice under “solo-stalk” cultivation mode"

处理Treatment 加工品质Processing quality 外观品质Appearance quality
氮肥水平
N level
追肥叶龄
Leaf age
糙米率
BRR (%)
精米率
MRR (%)
整精米率
HMR (%)
长宽比
LWR
透明度
TD
垩白大小
CS (%)
垩白粒率
CGR (%)
垩白度
CD (%)
N1 L6 84.67 a 66.18 a 62.19 a 1.65 a 3.0 a 56.9 a 9.3 a 5.3 f
L7 84.76 a 66.36 a 62.66 a 1.66 a 3.0 a 60.5 a 9.2 a 5.5 ef
L8 84.86 a 66.54 a 63.15 a 1.66 a 3.0 a 59.0 a 11.1 a 6.4 cde
L9 84.96 a 66.68 a 63.89 a 1.66 a 3.0 a 61.6 a 11.7 a 7.2 abc
L10 85.30 a 67.15 a 64.29 a 1.67 a 3.0 a 67.8 a 11.4 a 7.8 ab
N2 L6 84.66 a 66.38 a 62.40 a 1.66 a 3.0 a 61.2 a 9.6 a 5.5 ef
L7 84.76 a 66.97 a 63.01 a 1.66 a 3.0 a 62.1 a 9.6 a 5.9 def
L8 85.13 a 67.11 a 63.74 a 1.66 a 3.0 a 60.2 a 11.6 a 7.0 bcd
L9 85.20 a 67.52 a 64.01 a 1.66 a 3.0 a 63.9 a 12.1 a 7.7 ab
L10 85.30 a 68.04 a 64.64 a 1.67 a 3.0 a 70.3 a 11.7 a 8.2 a
F-value
N 1.13NS 0.59NS 0.29NS 0.07NS 0.60NS 0.42NS 8.41NS
L 1.66NS 1.03NS 3.68NS 1.14NS 2.94NS 3.61* 22.50**
N×L 0.14NS 0.08NS 0.04NS 0.05NS 0.06NS 0.01NS 0.05NS
CK1 84.28 66.34 62.35 1.67 3.0 71.5 10.5 7.5
CK2 84.88 66.72 62.72 1.67 3.0 65.2 11.1 7.2

Table 6

Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on cooking, eating and nutritional quality of dry direct seed rice under “solo-stalk” cultivation mode"

处理Treatment 食味值
Taste value
外观
Appearance
硬度
Hardness
黏度
Viscosity
蛋白质含量
PC (%)
直链淀粉含量
AC (%)
氮肥水平
N level
追肥叶龄
Leaf age
N1 L6 82.1 a 8.3 a 5.8 e 8.7 a 7.63 e 12.49 a
L7 78.7 a 7.8 a 6.0 d 8.3 a 7.73 de 12.08 ab
L8 74.0 bc 7.1 bc 6.3 bc 7.6 b 7.93 de 11.69 abc
L9 73.8 bc 7.0 bc 6.4 bc 7.6 b 8.13 cde 11.10 bcd
L10 70.8 cd 6.5 cd 6.6 a 7.2 bc 8.28 bcde 10.42 d
N2 L6 81.4 a 8.2 a 5.8 e 8.6 a 7.98 cde 12.15 ab
L7 74.8 b 7.2 b 6.2 cd 7.6 b 8.35 bcd 11.52 abc
L8 73.2 bc 7.0 bc 6.3 bc 7.4 bc 8.62 abc 11.13 bcd
L9 70.8 cd 6.6 cd 6.5 ab 7.1 bc 8.83 ab 10.64 cd
L10 68.7 d 6.3 d 6.7 a 6.8 c 9.13 a 10.15 d
F-value
N 17.27NS 12.98NS 3.27NS 16.69NS 132.13** 51.64*
L 39.29** 38.67** 45.57** 28.14** 5.90** 10.00**
N×L 0.89NS 1.03NS 0.44NS 1.15NS 0.39NS 0.07NS
CK1 72.0 7.0 6.4 7.2 7.70 12.20
CK2 74.1 7.2 6.1 7.6 7.55 12.50
[1] 佴军, 张洪程, 陆建飞. 江苏省水稻生产30年地域格局变化及影响因素分析. 中国农业科学, 2012,45:3446-3452.
Nai J, Zhang H C, Lu J F. Regional pattern changes of rice production in thirty years and its influencing factors in Jiangsu province. Sci Agric Sin, 2012,45:3446-3452 (in Chinese with English abstract).
[2] Xiong W, Conway D, Lin E, Holman I. Potential impacts of climate change and climate variability on China’s rice yield and production. Climate Res, 2009,40:23-35.
[3] 朱德峰, 程式华, 张玉屏, 林贤青, 陈惠哲. 全球水稻生产现状与制约因素分析. 中国农业科学, 2010,43:474-479.
Zhu D F, Cheng S H, Zhang Y P, Lin X Q, Chen H Z. Analysis of status and constraints of rice production in the world. Sci Agric Sin, 2010,43:474-479 (in Chinese with English abstract).
[4] 曾山, 汤海涛, 罗锡文, 马国辉, 王在满, 臧英, 张明华. 同步开沟起垄施肥水稻精量旱穴直播机设计与试验. 农业工程学报, 2012,28(20):12-19.
Zeng S, Tang H T, Luo X W, Ma G H, Wang Z M, Zang Y, Zhang M H. Design and experiment of precision rice hill-drop drilling machine for dry land with synchronous fertilizing. Trans CSAE, 2012,28(20):12-19 (in Chinese with English abstract).
[5] 轧宗杰, 卢树昌, 侯琨. 水稻旱直播栽培发展现状、问题及应用前景. 作物杂志, 2020, ( 2):9-15.
Ya Z J, Lu S C, Hou K. Development status, problems and application prospects of dry direct seeding rice. Crops, 2020, ( 2):9-15 (in Chinese with English abstract).
[6] 赵正洪, 戴力, 黄见良, 潘晓华, 游艾青, 赵全志, 陈光辉, 周政, 胡文彬, 纪龙. 长江中游稻区水稻产业发展现状、问题与建议. 中国水稻科学, 2019,33:553-564.
Zhao Z H, Dai L, Huang J L, Pan X H, You A Q, Zhao Q Z, Chen G H, Zhou Z, Hu W B, Ji L. Status, problems and solutions in rice industry development in the middle reaches of the Yangtze river. Chin J Rice Sci, 2019,33:553-564 (in Chinese with English abstract).
[7] 张洪程. 直播稻种植科学问题研究. 北京: 中国农业科学技术出版社, 2009. pp 1-15.
Zhang H C. Research on the Scientific Issues of Direct Seeding Rice Planting. Beijing: China Agricultural Science and Technology Press, 2009. pp 1-15(in Chinese).
[8] 吴文革, 陈烨, 钱银飞, 王小军, 吴一梅. 水稻直播栽培的发展概况与研究进展. 中国农业科技导报, 2006,8(4):32-36.
Wu W G, Chen Y, Qian Y F, Wang X J, Wu Y M. The current status and progresses of the research on direct seeding rice. J Agric Sci Technol, 2006,8(4):32-36 (in Chinese with English abstract).
[9] Xing Z P, Hu Y J, Qian H J, Cao W W, Guo B W, Wei H Y, Xu K, Huo Z Y, Zhou G S, Dai Q G, Zhang H C. Comparison of yield traits in rice among three mechanized planting methods in a rice-wheat rotation system. J Integr Agric, 2017,16:1451-1466.
[10] 侯庆福, 周复来. 晚茬冬小麦高产独秆栽培法. 莱阳农学院学报, 1985, ( 2):23-29.
Hou Q F, Zhou F L. A cultivating method for high yield and single stem of the late planting wheat. J Laiyang Agric Coll, 1985, ( 2):23-29 (in Chinese with English abstract).
[11] 龚金龙, 张洪程, 常勇, 胡雅杰, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 沙安勤, 周有炎, 罗学超. 稻麦“双迟”栽培模式及其周年生产力的综合评价. 中国水稻科学, 2011,25:629-638.
Gong J L, Zhang H C, Chang Y, Hu Y J, Long H Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Li D J, Sha A Q, Zhou Y Y, Luo X C. “Double late” cultivation model for rice and wheat and its comprehensive evaluation on annual productivity. Chin J Rice Sci, 2011,25:629-638 (in Chinese with English abstract).
[12] 朱兆良, 孙波, 杨林章, 张林秀. 我国农业面源污染的控制政策和措施. 科技导报, 2005,23(4):47-51.
Zhu Z L, Sun B, Yang L Z, Zhang X L. Policy and countermeasures to control non-point pollution of agriculture in China. Sci Technol Rev, 2005,23(4):47-51 (in Chinese with English abstract).
[13] 李杰, 张洪程, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同种植方式对超级稻籽粒灌浆特性的影响. 作物学报, 2011,37:1631-1641.
Li J, Zhang H C, Gong J L, Chang Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Influence of planting methods on grain-filling properties of super rice. Acta Agron Sin, 2011,37:1631-1641 (in Chinese with English abstract).
[14] Ali M A, Ladha J K, Rickman J, Laies J S. Comparison of different methods of rice establishment and nitrogen management strategies for lowland rice. J Crop Improv, 2006,16:173-189.
[15] 朱大伟, 郭保卫, 张洪程, 刘国涛, 戴其根, 霍中洋, 许轲, 魏海燕. 播期对优质米“南粳9108”生长特性及积温光照利用的影响. 生态学杂志, 2014,33:3010-3017.
Zhu D W, Guo B W, Zhang H C, Liu G T, Dai Q G, Huo Z Y, Xu K, Wei H Y. Effects of sowing date on the growth characteristics and utilization of temperature and illumination of high quality japonica rice Nanjing 9108 in different ecological regions. Chin J Ecol, 2014,33:3010-3017 (in Chinese with English abstract).
[16] 李旭毅, 卿发红, 池忠志, 姜心禄, 郭翔, 郑家国, 刘世蓉. 水稻机械精量穴直播出苗阶段水分管理方式研究. 西南农业学报, 2017,30:2449-2453.
Li X Y, Qing F H, Chi Z Z, Jiang X L, Guo X, Zheng J G, Liu S R. Study on water management for mechanical precise hill-drop drilling rice during emergence stage. Southwest Chin J Agric Sci, 2017,30:2449-2453 (in Chinese with English abstract).
[17] 丁艳锋, 刘胜环, 王绍华, 王强盛, 黄丕生, 凌启鸿. 氮素基、蘖肥用量对水稻氮素吸收与利用的影响. 作物学报, 2004,30:739-744.
Ding Y F, Liu S H, Wang S H, Wang Q S, Huang P S, Ling Q H. Effects of the amount of basic and tillering nitrogen applied on absorption and utilization of nitrogen in rice. Acta Agron Sin, 2004,30:739-744 (in Chinese with English abstract).
[18] 钟旭华, 黄农荣, 郑海波, 彭少兵, Buresh R. 不同时期施氮对华南双季杂交稻产量及氮素吸收和氮肥利用率的影响. 杂交水稻, 2007,22(4):62-66.
Zhong X H, Huang N R, Zheng H B, Peng S B, Buresh R J. Effect of nitrogen application timing on grain yield, nitrogen uptake and use efficiency of hybrid rice in south China. Hybrid Rice, 2007,22(4):62-66 (in Chinese with English abstract).
[19] 谢小兵, 周雪峰, 蒋鹏, 陈佳娜, 张瑞春, 伍丹丹, 曹放波, 单双吕, 黄敏, 邹应斌. 低氮密植栽培对超级稻产量和氮素利用率的影响. 作物学报, 2015,41:1591-1602.
Xie X B, Zhou X F, Jiang P, Chen J N, Zhang R C, Wu D D, Cao F B, Shan S L, Huang M, Zou Y B. Effect of low nitrogen rate combined with high plant density on grain yield and nitrogen use efficiency in super rice. Acta Agron Sin, 2015,41:1591-1602 (in Chinese with English abstract).
[20] 朱相成, 张振平, 张俊, 邓艾兴, 张卫建. 增密减氮对东北水稻产量、氮肥利用效率及温室效应的影响. 应用生态学报, 2016,27:453-461.
Zhu X C, Zhang Z P, Zhang J, Deng A X, Zhang W J. Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in northeast China. Chin J Appl Ecol, 2016,27:453-461 (in Chinese with English abstract).
[21] 郭俊杰, 柴以潇, 李玲, 高丽敏, 谢凯柳, 凌宁, 郭世伟. 江苏省水稻减肥增产的潜力与机制分析. 中国农业科学, 2019,52:849-859.
Guo J J, Chai Y X, Li L, Gao L M, Xie K L, Ling N, Guo S W. The potential and related mechanisms of increasing rice yield by reducing chemical nitrogen application in Jiangsu province. Sci Agric Sin, 2019,52:849-859 (in Chinese with English abstract).
[22] 肖小平, 李超, 唐海明, 汤文光, 程凯凯, 郭立君, 汪柯, 潘孝晨. 秸秆还田下减氮增密对双季稻田土壤氮素库容及氮素利用率的影响. 中国生态农业学报, 2019,27:422-430.
Xiao X P, Li C, Tang H M, Tang W G, Cheng K K, Guo L J, Wang K, Pan X C. Soil nitrogen storage and recovery efficiency in double paddy fields under reduced nitrogen dose and increased crop density. Chin J Eco-Agric, 2019,27:422-430 (in Chinese with English abstract).
[23] 张洪程, 吴桂成, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 端木银熙, 孙菊英, 赵品恒, 沙安勤, 周有炎, 李德剑, 肖跃成, 王宝金, 吴爱国. 粳型杂交水稻超高产形成规律与栽培途径的探讨. 杂交水稻, 2010,25(增刊1):346-353.
Zhang H C, Wu G C, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Duan-Mu Y X, Sun J Y, Zhao P Q, Sha A Y, Zhou Y Y, Li D J, Xiao Y C, Wang B J, Wu A G. Formulation of and cultural approach to super-high yielding in japonica hybrid rice. Hybrid Rice, 2010,25(S1):346-353 (in Chinese with English abstract).
[24] 吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗华, 孙菊英, 赵品恒. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010,43:266-276.
Wu G C, Zhang H C, Qian Y F, Li D J, Zhou Y Y, Xu J, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Xu Z J, Qian Z H, Sun J Y, Zhao P H. Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice. Sci Agric Sin, 2010,43:266-276 (in Chinese with English abstract).
[25] 魏海燕, 王亚江, 孟天瑶, 葛梦婕, 张洪程, 戴其根, 霍中洋, 许轲. 机插超级粳稻产量、品质及氮肥利用率对氮肥的响应. 应用生态学报, 2014,25:488-496.
Wei H Y, Wang Y J, Meng T Y, Ge M J, Zhang H C, Dai Q G, Huo Z Y, Xu K. Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanical transplanting super japonica rice. Chin J Appl Ecol, 2014,25:488-496 (in Chinese with English abstract).
[26] 成臣, 曾勇军, 王祺, 谭雪明, 商庆银, 曾研华, 石庆华. 施氮量对晚粳稻甬优1538产量、品质及氮素吸收利用的影响. 水土保持学报, 2018,32(5):222-228.
Cheng C, Zeng Y J, Wang Q, Tan X M, Shang Q Y, Zeng Y H, Shi Q H. Effects of nitrogen application rates on japonica rice yield, quality, and nitrogen uptake and utilization during the late-rice cropping seasons in southern China. J Soil Water Conserv, 2018,32(5):222-228 (in Chinese with English abstract).
[27] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006,39:1336-1345.
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth and development characteristics of super-high-yielding mid-season japonica rice. Sci Agric Sin, 2006,39:1336-1345 (in Chinese with English abstract).
[28] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2005. pp 69-77.
Ling Q H. The Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2005. pp 69-77(in Chinese).
[29] 凌启鸿. 水稻精确定量栽培原理与技术. 杂交水稻, 2010,25(增刊1):27-34.
Ling Q H. Theory and technology of rice precise and quantitative cultivation. Hybrid Rice, 2010,25(S1):27-34 (in Chinese with English abstract).
[30] 杨建昌, 杜永, 刘辉. 长江下游稻麦周年超高产栽培途径与技术. 中国农业科学, 2008,41:1611-1621.
Yang J C, Du Y, Liu H. Cultivation approaches and techniques for annual super-high-yielding of rice and wheat in the lower reaches of Yangtze river. Sci Agric Sin, 2008,41:1611-1621 (in Chinese with English abstract).
[31] 严进明, 张荣铣, 焦德茂, 陈炳松, 张红生. 重穗型杂种稻光合和光合产物运转特性研究. 作物学报, 2001,27:261-266.
Yan J M, Zhang R X, Jiao D M, Chen B S, Zhang H S. Studies on characteristics of photosynthesis and assimilate’s transportation in heavy ear hybrid rice (Oryza sativa L.). Acta Agron Sin, 2001,27:261-266 (in Chinese with English abstract).
[32] 龚金龙, 胡雅杰, 龙厚元, 常勇, 葛梦婕, 高辉, 刘艳阳, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 沙安勤, 周有炎, 罗学超. 不同时期施硅对超级稻产量和硅素吸收、利用效率的影响. 中国农业科学, 2012,45:1475-1488.
Gong J L, Hu Y J, Long H Y, Chang Y, Ge M J, Gao H, Liu Y Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Li D J, Sha A Q, Zhou Y Y, Luo X C. Effect of application of silicon at different periods on grain yield and silicon absorption, use efficiency in super rice. Sci Agric Sin, 2012,45:1475-1488 (in Chinese with English abstract).
[33] 龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻产量构成特征的差异研究. 核农学报, 2014,28:500-511.
Gong J L, Xing Z P, Hu Y J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Studies on the difference of yield components characteristics between indica and japonica super rice. J Nucl Agric Sci, 2014,28:500-511 (in Chinese with English abstract).
[34] Huang Y Y, Zhao S S, Fu Y C, Sun H D, Ma X, Tan L B, Liu F X, Sun X Y, Sun H Y, Gu P, Xie D X, Sun C Q, Zhu Z F. Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication. Plant J, 2018,96:716-733.
doi: 10.1111/tpj.14062 pmid: 30101570
[35] 黄发松, 孙宗修, 胡培松, 唐绍清. 食用稻米品质形成研究的现状与展望. 中国水稻科学, 1998,12:172-176.
Huang F S, Sun Z X, Hu P S, Tang S Q. Present situations and prospects for the research on rice grain quality forming. Chin J Rice Sci, 1998,12:172-176 (in Chinese with English abstract).
[36] 李广宇, 彭显龙, 刘元英, 盛大海, 暴勇. 前氮后移对寒地水稻产量和稻米品质的影响. 东北农业大学学报, 2009,40(3):7-11.
Li G Y, Peng X L, Liu Y Y, Sheng D H, Bao Y. Effects of applying N at later growth stage on rice yield and quality in cold area of China. J Northeast Agric Univ, 2009,40(3):7-11 (in Chinese with English abstract).
[37] 刘梦红, 杜春颖, 杨锡铜, 周雪松, 赵海成, 李红宇, 郑桂萍, 吕艳东. 土壤肥力和氮肥运筹对寒地水稻产量、品质及氮肥利用的影响. 河南农业科学, 2019,48(2):25-34.
Liu M H, Du C Y, Yang X T, Zhou X S, Zhao H C, Li H Y, Zheng G P, Lyu Y D. Effects of soil fertility and nitrogen application patterns on yield, quality and nitrogen utilization of rice in cold region. J Henan Agric Sci, 2019,48(2):25-34 (in Chinese with English abstract).
[38] 殷春渊, 王书玉, 刘贺梅, 孙建权, 胡秀明, 薛应征, 王和乐, 范永胜. 不同密度和施氮量对稻米品质特性的影响. 河南农业科学, 2015,44(9):15-18.
Yin C Y, Wang S Y, Liu H M, Sun J Q, Hu X M, Xue Y Z, Wang H L, Fan Y S. Effects of different planting density and amount of nitrogen fertilizer on rice quality characteristics. J Henan Agric Sci, 2015,44(9):15-18 (in Chinese with English abstract).
[39] 万靓军, 张洪程, 霍中洋, 林忠成, 戴其根, 许轲, 张军. 氮肥运筹对超级杂交粳稻产量、品质及氮素利用率的影响. 作物学报, 2007,33:175-182.
Wan L J, Zhang H C, Huo Z Y, Lin Z C, Dai Q G, Xu K, Zhang J. Effects of nitrogen application regimes on yield, quality, and nitrogen use efficiency of super japonica hybrid rice. Acta Agron Sin, 2007,33:175-182 (in Chinese with English abstract).
[40] 张洪程, 王秀芹, 戴其根, 霍中洋, 许轲. 施氮量对杂交稻两优培九产量、品质及吸氮特性的影响. 中国农业科学, 2003,36:800-806.
Zhang H C, Wang X Q, Dai Q G, Huo Z Y, Xu K. Effects of N-application rate on yield, quality and characters of nitrogen uptake of hybrid rice variety Liangyoupeijiu. Sci Agric Sin, 2003,36:800-806 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LIU Jia-Xin, LAN Yu, XU Qian-Yu, LI Hong-Ye, ZHOU Xin-Yu, ZHAO Xuan, GAN Yi, LIU Hong-Bo, ZHENG Yue-Ping, ZHAN Yi-Hua, ZHANG Gang, ZHENG Zhi-Fu. Creation and identification of peanut germplasm tolerant to triazolopyrimidine herbicides [J]. Acta Agronomica Sinica, 2022, 48(4): 1027-1034.
[11] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[12] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[13] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[14] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[15] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!