Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2953-2964.doi: 10.3724/SP.J.1006.2022.11107

• RESEARCH NOTES • Previous Articles    

Relationship between yield differences of different genotypes of oats and leaf physiological characteristics

LIU Yan-Di1(), ZHAO Bao-Ping1,*(), ZHANG Yu1, MI Jun-Zhen1, WU Jun-Ying2, LIU Jing-Hui1   

  1. 1School of Agriculture, Inner Mongolia Agricultural University, Hohhot 010000, Inner Mongolia, China
    2Vocational and Technical College of Inner Mongolia Agricultural University, Baotou 014000, Inner Mongolia, China
  • Received:2021-11-30 Accepted:2022-02-25 Online:2022-11-12 Published:2022-03-24
  • Contact: ZHAO Bao-Ping E-mail:1776242393@qq.com;zhaobaoping82@163.com
  • Supported by:
    The National Natural Science Foundation of China(31960378);The China Agriculture Research System of MOF and MARA(CARS-07);The International Cooperation Key Special Project of National Key Research and Development Program(2018YFE0107900)

Abstract:

To understand the effects of leaf physiological characteristics on yield during flowering process in oats, this experiment was conducted in 2020 and 2021, using nine varieties with different sources, maturity, ear type, plant type, and number of spikelets as experimental materials, and variance analysis, principal component analysis, cluster analysis, and other methods are used to analyze the relationship between the yield differences of different genotypes of oats and the physiological characteristics of leaves. The results showed that there were significant differences in the physiological characteristics of different varieties. The grain yield of high-yield varieties and lower-product varieties was significantly higher by 73.61% to 4.78%. The contents of GA3, ZR, IAA, SPS, SS activities, net photosynthetic rate, the overall level of leaf sucrose content, dry matter accumulation, and ear sucrose assimilation efficiency was better than those of low-yield varieties. Among them, the lower GA3 content, SPS activity, and net photosynthetic rate product varieties were significantly higher by 49.17% to 13.70%, 33.29% to 4.43%, and 87.88% to 5.72%. The results showed that the number of spikelets, the number of grains per spike, the content of gibberellin in leaves, the activity of sucrose phosphate synthase, and the net photosynthetic rate had the most significant effects on high-yielding varieties. These results indicated that increasing the number of bearing spikelets and the number of grains per ear can be used as a breakthrough to increase yield, appropriately opening the “source” and delaying leaf senescence to ensure the activity of enzymes and hormones, which had a positive impact on yield in oat.

Key words: oats, yield, physiological characteristics, heading date, principal component analysis

Table 1

Main characteristics of nine different genotypes in oats"

品种
Variety
皮裸性
Hulled or naked
株型
Plant type
穗型
Spike type
小穗数
Number of spikelets
熟期
Maturity stage
来源
Source
坝莜1号
Ba1

Naked
紧凑
Compact
周散
Scattered around
21, 中
21, middle
中熟
Middle maturity
河北
Hebei
坝莜9号
Ba9

Naked
紧凑
Compact
周散
Scattered around
30, 多
30, many
中熟
Middle maturity
河北
Hebei
坝莜18号
Ba18

Naked
紧凑
Compact
周散
Scattered around
39, 多
39, many
晚熟
Late maturity
河北
Hebei
草莜1号
Cao1

Naked
紧凑高秆
Compact high pole
周散
Scattered around
21, 中
21, middle
早熟
Early maturity
内蒙古
Inner Mongolia
白燕2号
Bai2

Naked
紧凑
Compact
侧散
Side scattered
11, 少
11, few
早熟
Early maturity
吉林
Jilin
白燕5号
Bai5

Naked
紧凑矮秆
Compact low bar
侧散
Side scattered
12, 少
12, few
早熟
Early maturity
吉林
Jilin
华北2号
Hua2

Naked
紧凑
Compact
周散
Scattered around
20, 中
20, middle
中熟
Middle maturity
河北
Hebei
定莜8号
Ding8

Naked
紧凑高秆
Compact high pole
周散
Scattered around
24, 中
24, middle
晚熟
Late maturity
甘肃定西
Dingxi, Gansu
蒙燕1号
Meng1

Hulled
紧凑
Compact
周散
Scattered around
27, 中
27, middle
中熟
Middle maturity
内蒙古
Inner Mongolia

Table 2

Growth period and basic seedling number of each variety"

年份
Year
基因型
Genotype
生育时期Childbearing period (month/day) 全生育期
Whole growth
stage (d)
基本苗数
Basic seedling
(×104 hm-2)
分蘖期
Tillering stage
拔节期
Jointing stage
抽穗期Heading stage 灌浆期
Grouting stage
成熟期
Maturity
2020 Ba1 5/27 6/4 6/27 7/12 7/30 92 400.20 ab
Ba9 5/27 6/4 6/27 7/12 7/31 93 430.22 a
Ba18 5/29 6/7 6/30 7/16 8/10 103 370.19 bcd
Cao1 5/27 6/5 6/27 7/12 8/3 96 330.17 e
Bai2 5/27 6/3 6/24 7/10 7/26 88 320.16 f
Bai5 5/27 6/4 6/24 7/11 7/28 90 350.18 cde
Hua2 5/27 6/4 6/26 7/12 7/31 93 420.21 a
Ding8 5/27 6/4 6/26 7/11 7/30 92 340.17 de
Meng1 5/27 6/4 6/27 7/13 7/31 93 380.19 bc
2021 Ba1 5/17 6/3 6/17 6/25 7/13 95 405.54 ab
Ba9 5/16 6/3 6/17 6/26 7/14 96 349.51 cd
Ba18 5/19 6/6 6/20 6/30 7/20 102 412.21 ab
Cao1 5/16 6/3 6/17 6/25 7/13 95 384.19 bc
Bai2 5/16 6/3 6/11 6/19 7/4 86 393.53 b
Bai5 5/16 5/26 6/11 6/20 7/5 87 344.17 d
Hua2 5/16 6/3 6/16 6/24 7/13 95 436.22 a
Ding8 5/16 5/26 6/19 6/24 7/13 95 318.83 d
Meng1 5/16 5/26 6/19 6/26 7/13 95 409.54 ab

Table 3

Yield differences of different genotypes in oats"

年份
Year
基因型Genotype 单位面积穗数
Number of ears per unit area
结实小穗数
Number of fruiting spikelets
花梢小穗数
Number of fancy spikelets
穗粒数
Number of grains per spike
籽粒产量
Grain yield
(kg hm-2)
2020 Ba1 408.33 a 41.40 a 0.67 e 107.15 a 3483.41 a
Ba9 383.00 c 34.31 b 2.13 d 72.58 d 3075.64 c
Ba18 396.00 b 40.53 a 3.99 c 91.13 b 3365.22 b
Cao1 258.33 g 34.53 b 4.13 c 82.09 c 2623.98 d
Bai2 214.33 i 29.93 c 4.02 c 69.27 f 2030.68 g
Bai5 313.00 f 30.18 c 2.02 d 70.78 e 2457.26 e
Hua2 240.00 h 24.94 d 5.26 b 61.40 g 2037.75 g
Ding8 334.00 e 18.20 e 8.38 a 48.87 i 2007.80 h
Meng1 371.00 d 23.93 d 5.13 b 55.08 h 2185.09 f
2021 Ba1 483.13 a 36.43 a 1.55 f 102.22 a 3581.79 a
Ba9 464.23 b 33.08 b 3.22 d 95.42 b 3247.87 b
Ba18 418.37 d 29.24 c 4.22 b 81.44 c 2963.98 c
Cao1 395.00 f 32.52 b 3.77 c 82.37 c 2813.91 d
Bai2 357.77 i 23.85 f 4.94 a 60.37 g 2320.78 h
Bai5 380.00 g 25.23 de 2.40 e 76.78 d 2767.88 e
Hua2 369.67 h 24.25 ef 4.04 bc 63.05 f 2436.22 g
Ding8 409.97 e 21.92 g 5.23 a 52.63 h 2063.16 i
Meng1 452.57 c 26.23 d 4.88 a 66.63 e 2625.24 f
年份Year (Y) *** *** * *** ***
品种Variety (V) *** *** *** *** ***
Y×V *** *** *** *** ***

Table 4

Differences in dry matter transport before anthesis and dry matter accumulation after anthesis in different oat genotypes"

年份
Year
基因型Genotype 花前干物质Dry matter before anthesis 花后干物质Dry matter after anthesis
转运量
Translocation amount
(kg hm-2)
贡献率
Contribution rate
(%)
积累量
Accumulation amount (kg hm-2)
贡献率
Contribution rate
(%)
2020 Ba1 559.75 e 16.07 2923.66 a 83.93
Ba9 768.38 c 24.98 2307.25 c 75.02
Ba18 608.09 e 18.07 2757.12 b 81.93
Cao1 688.62 d 26.24 1935.36 d 73.76
Bai2 896.98 b 44.17 1133.70 fg 55.83
Bai5 745.23 cd 30.33 1712.04 e 69.67
Hua2 1005.84 a 49.36 1031.92 g 50.64
Ding8 1028.78 a 51.24 979.02 g 48.76
Meng1 974.35 a 44.59 1210.74 f 55.41
2021 Ba1 513.32 e 14.33 3068.47 a 85.67
Ba9 584.29 d 17.99 2663.58 b 82.01
Ba18 522.18 de 17.62 2441.80 c 82.38
Cao1 517.06 e 18.38 2296.85 cd 81.62
Bai2 710.76 c 30.63 1610.03 ef 69.37
Bai5 647.79 c 23.40 2120.09 d 76.60
Hua2 910.32 b 37.37 1525.90 f 62.63
Ding8 1110.42 a 53.82 952.73 g 46.18
Meng1 862.56 b 32.86 1762.67 e 67.14

Table 5

Sucrose content in different genotypes of oats"

年份
Year
基因型Genotype 抽穗期蔗糖含量
Sucrose content at heading stage (mg g-1)
成熟期蔗糖含量
Sucrose content at maturity (mg g-1)
穗部蔗糖同化效率
Spike sucrose
assimilation efficiency (%)
茎Stem 叶Leaf 穗Spike 茎Stem 叶Leaf 穗Spike
2020 Ba1 128.30 a 129.84 a 110.79 a 41.98 g 30.57 f 13.51 g 87.81
Ba9 123.43 b 110.13 c 105.89 b 47.63 ef 37.36 e 16.81 ef 84.13
Ba18 126.25 a 113.43 b 111.74 a 46.13 f 33.21 f 15.96 f 85.72
Cao1 109.19 c 103.25 d 98.82 c 48.77 e 37.08 e 17.19 e 82.61
Bai2 80.72 e 97.41 f 84.59 f 59.89 b 49.61 b 23.60 b 72.09
Bai5 98.07 d 101.08 de 94.96 d 52.06 d 42.17 d 19.54 d 79.42
Hua2 82.04 e 96.94 f 87.23 e 58.95 b 47.63 bc 20.48 c 76.52
Ding8 79.87 e 93.26 g 82.80 g 65.54 a 53.10 a 25.20 a 69.57
Meng1 96.28 d 99.01 ef 94.20 d 54.52 c 44.81 cd 20.58 c 78.15
2021 Ba1 126.00 a 122.56 a 106.81 a 49.05 g 37.64 f 20.58 g 80.73
Ba9 120.81 b 103.64 bc 96.47 b 54.70 ef 44.43 e 23.88 ef 75.25
Ba18 110.89 c 106.57 b 104.88 a 53.20 f 40.28 f 23.03 f 78.04
Cao1 122.38 ab 101.54 c 94.98 bc 55.84 e 44.15 e 24.26 e 74.46
Bai2 76.43 f 94.73 d 82.63 e 66.96 b 56.68 b 30.67 b 62.88
Bai5 81.31 e 94.53 d 88.36 d 61.59 c 49.24 d 27.65 c 68.71
Hua2 78.66 ef 94.42 d 83.37 e 66.02 b 54.70 bc 27.55 c 66.95
Ding8 75.03 f 95.94 d 82.65 e 72.62 a 60.17 a 32.27 a 60.96
Meng1 99.40 d 94.36 d 93.37 c 59.14 d 51.88 cd 26.61 d 71.50

Table 6

Photosynthetic characteristics of different genotypes in oat"

年份
Year
基因型
Genotype
净光合速率
Pn (μmol m-2 s-1)
蒸腾速率
Tr (mmol m-2 s-1)
气孔导度
Gs (mmol m-2 s-1)
胞间CO2浓度
Ci (μmol mol-1)
2020 Ba1 30.85 a 10.38 a 277.05 a 364.00 a
Ba9 24.64 c 8.50 cd 189.02 d 346.47 c
Ba18 24.67 c 9.25 b 217.34 b 349.05 b
Cao1 28.12 b 9.16 bc 191.02 c 343.15 d
Bai2 21.41 d 6.60 f 168.23 f 335.22 f
Bai5 24.26 c 7.90 de 179.28 e 339.18 e
Hua2 18.29 e 7.67 e 148.89 g 319.47 g
Ding8 10.42 f 4.47 h 106.18 i 232.37 i
Meng1 20.50 d 5.31 g 146.48 h 280.45 h
2021 Ba1 26.90 a 13.63 a 289.32 a 497.59 a
Ba9 26.19 ab 13.60 a 288.77 ab 492.58 b
Ba18 25.67 b 13.30 a 287.24 cd 481.14 c
Cao1 23.28 c 13.20 ab 287.76 bc 455.21 d
Bai2 21.50 d 10.76 de 286.06 d 393.41 h
Bai5 22.02 d 12.03 bc 286.54 cd 412.44 f
Hua2 21.69 d 11.42 cd 286.43 cd 407.26 g
Ding8 20.45 e 9.64 e 281.58 e 350.27 i
Meng1 23.22 c 11.68 cd 286.89 cd 414.09 e
年份Year (Y) ns *** *** ***
基因型Genotype (G) *** *** *** ***
Y×G *** ** *** ***

Fig. 1

SPS and SS activities in flag leaves of different genotypes of oats Different letters indicate significant differences at P < 0.05. Abbreviations of varieties name are the same as those given in Table 1."

Fig. 2

Contents of ZR, IAA, GA3, and ABA in flag leaves of different genotypes in oats Different letters indicate significant differences at P < 0.05. Abbreviations of varieties name are the same as those given in Table 1."

Fig. 3

Correlation between leaf physiological characteristics and yield of different genotypes of oats * indicates a significant correlation at the 0.05 probability level; ** indicates a very significant correlation at the 0.01 probability level; GY: grain yield; NE: the number of ears per unit area; NS: the number of fruit spikelets; NF: the number of fancy spikelets; NG: the number of grains per ear; GA3: gibberellin; IAA: auxin; ABA: abscisic acid; ZR: zeatin nucleoside; SS: sucrose synthase; SPS: sucrose phosphate synthase; LSC: leaf sucrose content; Pn: net photosynthetic rate."

Table 7

Characteristic value and contribution rate of each indicator"

变量
Variable
主成分1
Principal
component 1
主成分2
Principal
component 2
GY 0.38 -0.13
NS 0.39 -0.07
NG 0.37 -0.18
GA 0.39 -0.06
IAA 0.28 0.66
ABA -0.28 0.64
ZR 0.36 0.20
Pn 0.36 0.24
特征值Eigenvalue 6.34 0.80
贡献率Contribution rate (%) 79.20 9.95
累计贡献率
Cumulative contribution rate (%)
79.20 89.15

Fig. 4

Principal component analysis load factor diagram of each index"

Fig. 5

Cluster analysis of different genotype oats"

[1] 任长忠, 闫金婷, 董锐, 胡新中. 燕麦营养成分、功能特性及其产品的研究进展. 食品工业科技, 2022, 43(12): 438-446.
Ren C Z, Yan J T, Dong R, Hu X Z. Research progress of oats’ nutritional components, functional properties and products. Sci Technol Food Ind, 2022, 43(12): 438-446. (in Chinese with English abstract)
[2] Browne R A, White E M, Burke J I. Responses of developmental yield formation processes in oats to variety, nitrogen, seed rate and plant growth regulator and their relationship to quality. J Agric Sci, 2006, 144: 533-545.
doi: 10.1017/S0021859606006538
[3] 李强强, 赵玥, 李璠, 朱一鸣, 杨成淦, 曹佳乐, 王志琴, 杨建昌, 顾骏飞. 作物源库关系及其生理调控途径的研究进展. 江苏农业科学, 2020, 48(9): 50-56.
Li Q Q, Zhao Y, Li F, Zhu Y M, Yang C G, Cao J L, Wang Z Q, Yang J C, Gu J F. Research progress on the source-sink relationship and physiological regulation of crops. Jiangsu Agric Sci, 2020, 48(9): 50-56. (in Chinese)
[4] Stephen P L, Amy M C, Zhu X G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 2015, 161: 56-66.
[5] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响. 作物学报, 2018, 44: 554-568.
Xu Y J, Xu Y D, Li Y Y, Qian X Y, Wang Z Q, Yang J C. Effects of alternate dry and wet irrigation on post-anthesis assimilation transfer and grain filling of rice. Acta Agron Sin, 2018, 44: 554-568. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00554
[6] Gu J F, Li Z K, Mao Y Q, Struik P C, Zhang H, Liu L J, Wang Z Q, Yang J C. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274: 320-331.
doi: 10.1016/j.plantsci.2018.06.010
[7] 陈婷婷, 褚光, 华小龙, 潘燕, 王志琴, 杨建昌. 花后干湿交替灌溉对水稻强、弱势粒蛋白质表达的影响. 中国农业科学, 2013, 46: 4665-4678.
Chen T T, Chu G, Hua X L, Pan Y, Wang Z Q, Yang J C. The effect of alternate dry and wet irrigation after flowering on the protein expression of strong and weak rice grains. Sci Agric Sin, 2013, 46: 4665-4678. (in Chinese with English abstract)
[8] 王志敏, 王树安, 苏宝林. 小麦穗粒数的调节: I. 开花前穗发育过程中的果聚糖代谢. 中国农业大学学报, 1996, 1(5): 21-26.
Wang Z M, Wang S A, Su B L. Regulation of grain number in wheat ears: I. Fructan metabolism during ear development before flowering. J China Agric Univ, 1996, 1(5): 21-26. (in Chinese)
[9] 王志敏, 王树安, 苏宝林. 小麦幼穗器官中蔗糖降解酶的活性与分布. 北京农业大学学报, 1995, 21(2): 147-151.
Wang Z M, Wang S A, Su B L. Activity and distribution of sucrose degrading enzymes in young ear organs of wheat. J Beijing Agric Univ, 1995, 21(2):147-151. (in Chinese)
[10] Ehdaie B, Alloush G A, Madore M A, Waines J G. Genotypic variation for stem reserves and mobilization in wheat: I. Postanthesis changes in internode dry matter. Crop Sci, 2006, 46: 735-746.
doi: 10.2135/cropsci2005.04-0033
[11] 李艳霞, 杨卫兵, 尹燕枰, 郑孟静, 陈金, 杨东清, 骆永丽, 庞党伟, 李勇, 王振林. 小麦小穗不同粒位粒重形成的生理特性差异. 作物学报, 2019, 45: 1715-1724.
doi: 10.3724/SP.J.1006.2019.91004
Li Y X, Yang W B, Yin Y P, Zheng M J, Chen J, Yang D Q, Luo Y L, Pang D W, Li Y, Wang Z L. Differences in physiological characteristics of wheat spikelets with different grain positions and grain weight formation. Acta Agron Sin, 2019, 45: 1715-1724. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.91004
[12] 雷亚柯, 王辉, 宋美丽, 魏艳丽. 不同穗型冬小麦源库关系及源库性状改良. 麦类作物学报, 2007, 27: 493-496.
Lei Y K, Wang H, Song M L, Wei Y L. Source-sink relationship and source-sink character improvement of winter wheat with different spike types. J Triticeae Crops, 2007, 27: 493-496. (in Chinese with English abstract)
[13] 杨东清, 王振林, 倪英丽, 尹燕枰, 蔡铁, 杨卫兵, 彭佃亮, 崔正勇, 江文文. 高温和外源ABA对不同持绿型小麦品种籽粒发育及内源激素含量的影响. 中国农业科学, 2014, 47: 2109-2125.
Yang D Q, Wang Z L, Ni Y L, Yin Y P, Cai T, Yang W B, Peng D L, Cui Z Y, Jiang W W. Effects of high temperature and exogenous ABA on grain development and endogenous hormone content of different green-holding wheat varieties. Sci Agric Sin, 2014, 47: 2109-2125. (in Chinese with English abstract)
[14] Talukder A S M H M, McDonald G K, Gill G S. Effect of short-term heat stress prior to flowering and at early grain set on the utilization of water-soluble carbohydrate by wheat genotypes. Field Crops Res, 2013, 14: 1-11.
doi: 10.1016/0378-4290(86)90042-0
[15] 张俊灵, 闫金龙, 张东旭, 孙美荣, 常海霞. 北部冬麦区旱地小麦品种的演变规律. 麦类作物学报, 2017, 37: 1017-1024.
Zhang J L, Yan J L, Zhang D X, Sun M R, Chang H X. Evolution of dryland wheat varieties in northern winter wheat regions. J Triticeae Crops, 2017, 37: 1017-1024. (in Chinese with English abstract)
[16] 张志良, 瞿伟菁. 植物生理学实验指导(第3版). 北京: 高等教育出版社, 2003. pp 93-98.
Zhang Z L, Qu W J. Experimental Guidance of Plant Physiology, 3rd edn. Beijing: Higher Education Press, 2003. pp 93-98. (in Chinese)
[17] Lowell C A, Tomlinson P T, Koch K E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. Plant Physiol, 1989, 90: 1394-1402.
doi: 10.1104/pp.90.4.1394 pmid: 16666942
[18] 张志芬, 付晓峰, 赵宝平, 刘俊青, 刘景辉. 腐植酸对重度干旱胁迫下燕麦叶片可溶性糖组分和内源激素的影响. 中国农业大学学报, 2018, 23(9): 11-20.
Zhang Z F, Fu X F, Zhao B P, Liu J Q, Liu J H. The effect of humic acid on the soluble sugar components and endogenous hormones of oat leaves under severe drought stress. J China Agric Univ, 2018, 23(9): 11-20. (in Chinese with English abstract)
[19] Chen L, Qiao Z H, Wang J J, Wang H G, Cao X N, Dong J L. Effect of nitrogen fertilizer on the accumulation and distribution of dry matter in broomcorn millet. Agric Sci Technol, 2015, 16: 1425-1428.
[20] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39: 1336-1345.
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Study on the growth and development characteristics of super high- yielding japonica rice. Sci Agric Sin, 2006, 39: 1336-1345. (in Chinese with English abstract)
[21] 李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲. 水稻高产氮高效型品种的物质积累与转运特性. 作物学报, 2013, 39: 101-109.
doi: 10.3724/SP.J.1006.2013.00101
Li M, Zhang H C, Yang X, Ge M J, Ma Q, Wei H Y, Dai Q G, Huo Z Y, Xu K. Material accumulation and transport characteristics of rice varieties with high nitrogen yield and high efficiency. Acta Agron Sin, 2013, 39: 101-109. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00101
[22] 钱薇, 刘媛, 栗孟飞, 杨德龙, 陈菁菁, 程宏波, 常磊, 柴守玺. 不同水分条件下小麦ILs群体花后不同器官蔗糖积累与转运的遗传特性. 麦类作物学报, 2017, 37: 1309-1317.
Qian W, Liu Y, Li M F, Yang D L, Chen J J, Cheng H B, Chang L, Chai S X. The genetic characteristics of sucrose accumulation and translocation in different organs of wheat ILs population under different water conditions. J Triticeae Crops, 2017, 37: 1309-1317. (in Chinese with English abstract)
[23] 刘雨晴, 孙娜娜, 高艳梅, 张震, 刘洋, 姚春生, 王志敏, 张英华. 不同基因型冬小麦穗粒数与粒重生理差异分析. 中国农业大学学报, 2021, 26(2): 1-15.
Liu Y Q, Sun N N, Gao Y M, Zhang Z, Liu Y, Yao C S, Wang Z M, Zhang Y H. Physiological difference analysis of spike number and grain weight of winter wheat with different genotypes. J China Agric Univ, 2021, 26(2): 1-15. (in Chinese with English abstract)
[24] 李永庚, 于振文, 姜东, 余松烈. 冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究. 作物学报, 2001, 27: 658-664.
Li Y G, Yu Z W, Jiang D, Yu S L. Study on the synthesis dynamics of sucrose and grain starch in winter wheat flag leaves and the related enzyme activities. Acta Agron Sin, 2001, 27: 658-664. (in Chinese with English abstract)
[25] 潘庆民, 于振文, 王月福. 小麦开花后旗叶中蔗糖合成与籽粒中蔗糖降解. 植物生理与分子生物学学报, 2002, 38: 235-240.
Pan Q M, Yu Z W, Wang Y F. Sucrose synthesis in flag leaves and sucrose degradation in wheat grains after flowering. J Plant Physiol Mol Biol, 2002, 38: 235-240. (in Chinese)
[26] 卢合全, 沈法富, 刘凌霄, 孙维方. 植物蔗糖合成酶功能与分子生物学研究进展. 中国农学通报, 2005, 21(7): 34-37.
Lu H Q, Shen F F, Liu L X, Sun W F. Research progress on the function and molecular biology of plant sucrose synthase. Chin Agric Sci Bull, 2005, 21(7): 34-37 (in Chinese with English abstract).
[27] 徐澜, 高志强, 安伟, 李彦良, 郭晨晨, 贾苏卿. 冬麦春播小麦发育进程中主茎叶片内源激素的变化. 核农学报, 2016, 30: 355-363.
doi: 10.11869/j.issn.100-8551.2016.02.0355
Xu L, Gao Z Q, An W, Li Y L, Guo C C, Jia S Q. Changes in the endogenous hormones of the main stem leaves during the development of winter wheat and spring sown wheat. Acta Agric Nucl Sin, 2016, 30: 355-363. (in Chinese with English abstract)
[28] 徐丽娜, 冯伟, 盛坤, 朱云集, 马冬云, 郭天财. 不同种植密度下兰考矮早八茎蘖叶片内源激素差异及其与分蘖成穗的关系. 作物学报, 2010, 36: 1596-1604.
doi: 10.3724/SP.J.1006.2010.01596
Xu L N, Feng W, Sheng K, Zhu Y J, Ma D Y, Guo T C. Differences of endogenous hormones in the leaves of Lankao Aizao 8 stems and tillers under different planting densities and their relationship with tillering and panicle formation. Acta Agron Sin, 2010, 36: 1596-1604. (in Chinese with English abstract)
[29] 宗学凤, 李芳红, 张建奎, 王三根. 蓝粒小麦植株发育进程中内源激素的变化. 西南大学学报(自然科学版), 2007, 29(12): 58-62.
Zong X F, Li F H, Zhang J K, Wang S G. Changes of endogenous hormones in the development of blue-grain wheat plants. J Southwest Univ (Nat Sci Edn), 2007, 29(12): 58-62. (in Chinese with English abstract)
[30] Li D Y, Zhang Z A, Zheng D J, Jiang L Y, Wang Y L. Comparison of net photosynthetic rate in leaves of soybean with different yield Levels. J Northeast Agric Univ, 2012, 19: 14-19.
[31] 陈四龙, 程增书, 宋亚辉, 王瑾, 刘义杰, 张朋娟, 李玉荣. 高产高油花生品种的光合与物质生产特征. 作物学报, 2019, 45: 276-288.
doi: 10.3724/SP.J.1006.2019.84050
Chen S L, Cheng Z S, Song Y H, Wang J, Liu Y J, Zhang P J, Li Y R. Photosynthetic and material production characteristics of high-yield and high-oil peanut varieties. Acta Agron Sin, 2019, 45: 276-288. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84050
[1] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[2] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[3] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[4] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[5] LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052.
[6] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[7] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[8] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[9] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[10] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[11] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[12] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[13] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[14] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[15] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[3]

CHANG Li-Ying;GU Dong-Xiang;ZHANG Wen-Yu;YANG Jie;CAO Wei-Xing;ZHU Yan

. A Simulation Model of Leaf Elongation Process in Rice[J]. Acta Agron Sin, 2008, 34(02): 311 -317 .
[4] HU Rui-Bo;TIAN Ji-Chun;LÜ Jian-Hua. Stability Analysis of Carotenoid Content and Its Coefficient Correlation with Yellow Alkaline Noodle Color Characteristics in Common Wheat(Triticum aestivum L.)[J]. Acta Agron Sin, 2004, 30(06): 597 -601 .
[5] Li Ling; Pan Ruichi. Study of PP333 Residue in Edible Part and Plough Soils of Rice and Peanut[J]. Acta Agron Sin, 1997, 23(06): 707 -711 .
[6] Wang Longchang;Wang Lixiang;Jia Zhikuan;Feng Jinxia. The Establishment of Decision System of Flexible Cropping and It′s Benefits in Dry-farming Areas[J]. Acta Agron Sin, 2003, 29(04): 557 -561 .
[7] Chen Hui;Fan Yuanhong;Xiang Yujinggong;Cai Qing;Zhang Yaping. Phylogenetic Relationships of Saccharum and Related Species Inferred from Se quence Analysis of the nrDNA ITS Region[J]. Acta Agron Sin, 2003, 29(03): 379 -385 .
[8] Wang Honggang;Zhu Jun;Liu Shubing. Identification of Tritelytrigia Translocation Line with Disease Resistance b y Cytology and RAPD Analysis[J]. Acta Agron Sin, 2001, 27(06): 886 -890 .
[9] Li Xiuju; Meng Fanjing. Changes of Plant Hormones during the Period of Inflorescence Differentiation and Formation in Soybean[J]. Acta Agron Sin, 1997, 23(04): 446 -449 .
[10] Wang Huacen;Liu Wanxing;Liu Wandai;Ma Yuanxi;Wang Chenyang;Lu Wensuo;Li Jiuxina. Preliminary Observation on Growth Rhythm and Inner Structure of Root System of Supper-high-yielding Wheat[J]. Acta Agron Sin, 1998, 24(06): 952 -956 .