Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2427-2434.doi: 10.3724/SP.J.1006.2022.13065

• REVIEW •     Next Articles

Insights on developing modern corn ecological breeding in southwest China

PAN Guang-Tang(), YANG Ke-Cheng, GAO Shi-Bin   

  1. National Key Laboratory for the Exploration and Utilization of Genetic Resources of Crops in Southwest China / Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2021-11-15 Accepted:2022-04-24 Online:2022-10-12 Published:2022-05-07
  • Contact: PAN Guang-Tang E-mail:pangt@sicau.edu.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-02);Sichuan Science and Technology Support Project(2016NYZ029);Sichuan Science and Technology Support Project(2021YFFZ0017)

Abstract:

Based on the principle of interaction between genotype and environment (G × E), we analyze the ecological zoning characteristics of maize breeding in southwest China, the development demand of national economy, the development trend of maize industry, the change of breeding target demand, the innovation of breeding technology system and so on. We focus on the systematic summary and explanation of the connotation of maize ecological breeding in southwest China in the new period. Further condensed with “full attention and utilization of (G × E) interaction” as the core, “industrialization of breeding objectives, diversification of variety types, special identification of variety selection, regionalization of variety layout, and collectivization of variety promotion.” the development concept of “modern ecological breeding” in Southwest corn region with the main content of “model of variety cultivation” systematically put forward the breeding goal of “low risk and high efficiency new hybrid” in the new period, which is characterized by “stable yield, high efficiency, environment-friendly, high quality and safety, easy seed production and harvest by machine ”. In order to promote the sustainable and healthy development of maize production and industry in southwest China, we proposed the following aspects should be emphasized in breeding technology system: 1) the path is to improve disease resistance and stress resistance of new varieties based on the premise of fine exploration and accurate identification of excellent and specific breeding resources; 2) the key is to utilize different heterotic groups, especially the cultivation of excellent inbred lines of tropical germplasm groups urgently needed in different ecological regions, and the identification of new hybrid combinations in specific ecological regions under multi-point biotic and abiotic strong stress for multi-year; 3) the guarantee is to popularize new varieties with stable yield, high yield and high efficiency guaranteed by efficient utilization of resources in specific ecological regions, environment-friendly and sustainable development of maize production.

Key words: maize, southwest China, traditional ecological breeding, modern ecological breeding

Fig. 1

The model about three-tier classification of the heterotic groups on maize germplasm in Southwest China"

[1] 马育华. 植物育种的数量遗传学基础. 南京: 江苏科学技术出版社, 1982. pp 18, 141-142.
Ma Y H. The Quantitative Genetic Basis of Crop Breeding. Nanjing: Jiangsu Science and Technology Press, 1982. pp 18, 141-142. (in Chinese)
[2] 荣廷昭, 潘光堂, 黄玉碧. 数量遗传学. 北京: 中国科学技术出版社, 2003. pp 72, 89-106.
Rong T Z, Pang G T, Huang Y B. Quantitative Genetics. Beijing: China Science and Technology Press, 2003. pp 72, 89-106. (in Chinese)
[3] 王建康. 数量遗传学. 北京: 科学出版社, 2017. pp 219-223, 236-238.
Wang J K. Quantitative Genetics. Beijing: Science Press, 2017. pp 219-223, 236-238 (in chinese).
[4] Hallauer A R, Carena M J, Miranda J B. 玉米育种的数量遗传学. 陈泽辉, 刘文欣, 雍洪军, 刘红军, 陈邵江, 译. 北京: 科学出版社, 2019. pp 77-106, 183-199, 279-306, 351-385, 428-479.
Hallauer A R, Carena M J, Miranda J B. Quantitative Genetics in Maize Breeding. In: Chen Z H, Liu W X, Yong H J, Liu H J, Chen S J, trans. Beijing: Science Press, 2019. pp 77-106, 183-199, 279-306, 351-385, 428-479. (in Chinese with English abstract)
[5] 荣廷昭, 李晚忱, 杨克诚, 张彪, 张述宽, 唐洪军, 番兴明. 西南生态区玉米育种. 北京: 中国农业出版社, 2003. pp 18-36, 84-95, 107-126, 134-151, 187-214, 260-264.
Rong T Z, Li W C, Yang K C, Zhang B, Zhang S K, Tang H J, Fan X M. Corn Breeding in Southwest in China. Beijing: China Agriculture Press, 2003. pp 18-36, 84-95, 107-126, 134-151, 187-214, 260-264. (in Chinese)
[6] 刘纪麟. 玉米育种学. 北京: 中国农业出版社(第2版), 2000, pp 291-317.
Liu J L. Corn Breeding. Beijing: China Agriculture Press, 2nd edn, 2003. pp 291-317.
[7] 农业部种植业管理司. 中国玉米品质区划及产业布局. 北京: 中国农业出版社, 2004. pp 321-361.
Department of Crop Management, Ministry of Agriculture. China’s Corn Quality Zoning and Industrial Layout. Beijing: China Agriculture Press, 2004. pp 321-361. (in Chinese)
[8] 汪黎明, 王庆成, 孟昭东. 中国玉米品种及其系谱. 上海: 上海科学技术出版社, 2010. pp 10, 542-712.
Wang L M, Wang Q C, Meng Z D. China’s Corn Varieties and Their Genealogy. Shanghai: Shanghai Scientific and Technical Pubishers, 2010. pp 10, 542-712. (in Chinese)
[9] Eberhart S A, Russell W A. Stability parameters for comparing varieties. Crop Sci, 1966, 6: 36-40.
doi: 10.2135/cropsci1966.0011183X000600010011x
[10] 陈雪求, 李殿申, 何文安, 王春生, 韩玉珍. 关于作物生态育种涉及的若干问题的探讨. 吉林农业大学学报, 1999, 21(2): 99-102.
Chen X Q, Li D S, He W A, Wang C S, Han Y Z. The discussion of several problems in plant ecological breeding. J Jilin Agric Univ, 1999, 21(2): 99-102. (in Chinese with English abstract)
[11] 荣廷昭, 李晚忱, 潘光堂. 新世纪初发展我国玉米遗传育种技术的思考. 玉米科学. 2003, 11(增刊2): 42-53.
Rong T Z, Li W C, Pan G T. Suggestion on development of science and technology in maize genetics and breeding at the beginning of 21st century. J Maize Sci, 2003, 11(S2): 42-53. (in Chinese with English abstract)
[12] 杨克诚, 苟才明, 荣廷昭, 潘光堂. 西南地区玉米育种现状及发展对策. 玉米科学, 2008, 16(3): 8-11.
Yang K C, Gou C M, Rong T Z, Pang G T. Discussion present situation of maize breeding and countermeasure in southwest region. J Maize Sci, 2008, 16(3): 8-11. (in Chinese with English abstract)
[13] 潘光堂, 杨克诚. 我国西南玉米育种面临的挑战及相应对策探讨. 作物学报, 2012, 38: 1141-1147.
Pan G T, Yang K C. Facing to challenges and corresponding strategies for maize breeding in southwestern region of China. Acta Agron Sin, 2012, 38: 1141-1147. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01141
[14] 李高科, 潘光堂. 西南玉米种质利用现状及研究进展. 玉米科学, 2005, 21(2): 3-7.
Li G K, Pan G T. The utilization present situation and study advances of the germplasm in southwest maize zone. J Maize Sci, 2005, 13(2): 3-7. (in Chinese with English abstract)
[15] 胡瑞发, Meng Erika C H, 张世煌, 石晓华. 采用参与式方法评估中国玉米研究的优先序. 中国农业科学, 2004, 37: 781-787.
Hu R F, Meng Erika C H, Zhang S H, Shi X H. Prioritization for maize research and development in China. Sci Agric Sin, 2004, 37: 781-787. (in Chinese with English abstract)
[16] 李芦江, 陈文生, 张敏, 兰海, 潘光堂, 杨克诚. 240份玉米自交系纹枯病抗性鉴定与评价. 植物遗传资源学报, 2014, 15: 1113-1119.
Li L J, Chen W S, Zhang M, Lan H, Pan G T, Yang K C. Identification and evolution of 240 maize inbred lines for resistant to banded leaf and sheath blight. J Plant Genet Res, 2014, 15: 1113-1119.. (in Chinese with English abstract)
[17] 李辉, 向葵, 张志明, 袁广胜, 潘光堂. 玉米穗腐病抗性机制及抗病育种研究进展. 玉米科学, 2019, 27(4): 167-174.
Li H, Xiang K, Zhang Z M, Yuan G S, Pan G T. Research progress on ear rot resistant mechanism and resistant breeding in maize. J Maize Sci, 2019, 27(4): 167-174. (in Chinese with English abstract)
[18] 张吉海, 高世斌, 杨克诚, 张志明, 林海建, 黄宁, 郑溟, 徐克成, 陈义轩, 潘光堂. 玉米耐低磷种质资源的筛选与鉴定. 植物遗传资源学报, 2008, 9: 335-339.
Zhang J H, Gao S B, Yang K C, Zhang Z M, Lin H J, Huang N, Zheng M, Xu K C, Chen Y X, Pan G T. Screening and identification for tolerance to low phosphorus stress of maize germplasm resources. J P1ant Genet Res, 2008, 9: 335-339. (in Chinese with English abstract)
[19] Zhang L T, Li J, Rong T Z, Gao S B, Wu F K, Xu J, Li M L, Cao M J, Wang J, Hu E L, Liu Y X, Lu Y L. Large-scale screening maize germplasm for low-phosphorus tolerance using multiple selection criteria. Euphytica, 2014, 197: 435-446.
doi: 10.1007/s10681-014-1079-3
[20] Zhang Z M, Jin F, Wang C, Luo J, Lin H J, Xiang K, Liu L, Zhao M J, Zhang Y S, Ding H P, Zhou S F, Shen Y O, Pan G T. Difference between Pb and Cd accumulation in 19 elite maize inbred lines and application prospects. J Biomed Biotechnol, 2012, ID271485.
[21] 赵雄伟, 金枫, 曹艳花, 李芦江, 张永中, 张志明, 沈亚欧, 林海建, 潘光堂. 玉米重金属铅Pb2+含量的配合力分析与育种对策. 植物遗传资源学报, 2015, 16: 29-36.
Zhao X W, Jin F, Cao Y H, Li L J, Zhang Y Z, Zhang Z M, Shen Y O, Lin H J, Pan G T. Combining ability analysis for Pb2+ content in maize and corresponding breeding strategy. J P1ant Genet Res, 2015, 16: 29-36. (in Chinese with English abstract)
[22] Lu Y L, Yan J B, Claudia Guimarães T, Taba S, Ha Z F, Gao S B, Chen S J, Li J S, Zhang S H, Vivek S B, Magorokosho C, Mugo S, Makumbi D, Parentoni S N, Shah T, Rong T Z, Crouch J H, Xu Y B. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet, 2009, 120: 93-115.
doi: 10.1007/s00122-009-1162-7
[23] 潘光堂, 杨克诚, 李晚忱, 黄玉碧, 高世斌, 兰海, 李芦江, 曹墨菊, 唐祈林, 付凤玲, 周树峰, 吴元奇, 卢艳丽, 林海建, 沈亚欧, 荣廷昭. 我国西南玉米杂种优势群及其杂优模式研究与应用的回顾. 玉米科学. 2020, 28(1): 1-8.
Pan G T, Yang K C, Li W C, Huang Y B, Gao S B, Lan H, Cao M J, Tang Q L, Fu F L, Zhou S F, Wu Y Q, Lu Y L, Lin H J, Sheng Y O, Rong T Z. A review of the research and application of heterotic groups and patterns of maize breeding in southwest China. J Maize Sci, 2020, 28(1): 1-8. (in Chinese with English abstract)
[24] 梁燕, 高世斌, 谭登峰, 李建, 张志明, 潘光堂. 玉米温热杂交种光周期敏感相关性状的遗传模型研究. 中国农业科学, 2008, 41: 3326-3335.
Liang Y, Gao S B, Tan D F, Li J, Zhang Z M, Pan G T. Study on genetic model of traits related to photoperiod sensitive phenomenon of Temperate × Tropical crosses in maize. Sci Agric Sin, 2008, 41: 3326-3335. (in Chinese with English abstract)
[25] Mu G Q, Liang Y, Zhang Z M, Wu Y Q, Liu S J, Peng H, Zhang S Z, Pan G T. Mapping quantitative trait loci associated with photoperiod sensitivity in maize (Zea mays L.). J Integr Agric, 2009, 8(1): 24-30.
[26] Zhang X, Zhang H, Li L J, Lan H, Ren Z Y, Liu D, Wu L, Liu H L, Jaqueth J, Li B L, Pang G T, Gao S B. Characterizing the population structure and genetic diversity of maize breeding germplasm in southwest China using genome-wide SNP markers. BMC Genomics, 2016, 17: 697.
[27] Luo B W, Ma P, Nie Z, Zhang X, He X, Ding X, Feng X, Lu Q X, Ren Z Y, Lin H J, Wu Y Q, Shen Y O, Zhang S Z, Wu L, Liu D, Pan G T, Rong T Z, Gao S B. Combining metabolite profiling with genome-wide association study to reveal response mechanisms of Zea mays seedlings under low-phosphorus conditions. Plant J, 2019, 97: 947-969.
doi: 10.1111/tpj.14160
[28] 杨爱国, 张世煌, 李明顺, 荣廷昭, 潘光堂. CIMMYT和我国玉米种质群体的配合力及杂种优势分析. 作物学报, 2006, 32: 1329-1337. (in Chinese with English abstract)
Yang A G, Zhang S H, Li M S, Rong T Z, Pan G T. Combining ability and heterosis of 14 CIMMYT and 13 domestic maize populations in an NCII mating design. Acta Agron Sin, 2006, 32: 1329-1337.
[29] 邬成, 陈泽辉, 祝云芳, 王安贵, 郭向阳, 李娟. 玉米Tuxpeno和Suwan种质改良系农艺性状的分析. 贵州农业科学, 2010, 38(7): 1-4.
Wu C, Chen Z H, Zhu Y F, Wang A G, Guo X Y, Li J. Analysis of agronomic characters of corn Tuxpeno and Suwan germplasm improved lines. Guizhou Agric Sci, 2010, 38(7): 1-4. (in Chinese with English abstract)
[30] 陈泽辉, 祝云芳, 王安贵, 郭向阳, 赵丽, 胡兴. 玉米Tuxpeno-Reid和Suwan-Lancaster合成群体相互轮回选择效果及杂种优势研究. 玉米科学, 2013, 21(4): 1-5.
Chen Z H, Zhu Y F, Wang A G, Guo X Y, Zhao L, Hu X. Two Maize populations of Tuxpeno-Reid and Suwan-Lancaster by reciprocal selection and the heterosis. J Maize Sci, 2013, 21(4): 1-5. (in Chinese with English abstract)
[1] DUAN Can-Xing, CUI Li-Na, XIA Yu-Sheng, DONG Huai-Yu, YANG Zhi-Huan, HU Qing-Yu, SUN Su-Li, LI Xiao, ZHU Zhen-Dong, WANG Xiao-Ming. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot [J]. Acta Agronomica Sinica, 2022, 48(9): 2155-2167.
[2] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[3] GUO Yao, CHAI Qiang, YIN Wen, FAN Hong. Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize [J]. Acta Agronomica Sinica, 2022, 48(8): 1871-1883.
[4] WANG Tian-Bo, HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos [J]. Acta Agronomica Sinica, 2022, 48(8): 1996-2006.
[5] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[6] YANG Ying-Xia, ZHANG Guan, WANG Meng-Meng, LU Guo-Qing, WANG Qian, CHEN Rui. Molecular characterization of transgenic maize GM11061 based on high-throughput sequencing technology [J]. Acta Agronomica Sinica, 2022, 48(7): 1843-1850.
[7] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[8] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[9] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[10] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[11] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[12] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[13] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[14] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[15] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[3] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[4] YANG Yan;ZHAO Xian-Lin; ZHANG Yong;CHEN Xin-Min;HE Zhong-Hu;YU Zhuo;XIA Lan-Qin
. Evaluation and Validation of Four Molecular Markers Associated with Pre-Harvest Sprouting Tolerance in Chinese Wheats[J]. Acta Agron Sin, 2008, 34(01): 17 -24 .
[5] XU Zheng-Jin;CHEN Wen-Fu;MA Dian-Rong;LU Ying-Na;ZHOU Shu-Qing;LIU Li-Xia. Correlations between Rice Grain Shapes and Main Qualitative Characteristics[J]. Acta Agron Sin, 2004, 30(09): 894 -900 .
[6] Ye Xiaoli;Li Xuegang;Li Jiana. Mechanism of Melanin Synthesis in Seed Coat of Brassica napus L.[J]. Acta Agron Sin, 2002, 28(05): 638 -643 .
[7] WU Zheng-Bin; CHEN Peng; YANG Ye-Hua; SHU Yu-Song;XIE Hong-Bin. Evaluation of the Resistance of Different Insect-resistant Cotton Cultivars to the Pink Bollworm[J]. Acta Agron Sin, 2005, 31(01): 53 -57 .
[8] Meng Jinling;Liu Houli. THE EFFECTS OF SUCCESSIVE INBREEDING ON THE EMBRYO DEVELOPMENT OF BRASSICA NAPUS L[J]. Acta Agron Sin, 1986, 12(02): 79 -86 .
[9] NAI Jun;PAN Xue-Biao;CHEN Zong-Xiang;ZHANG Ya-Fang. Method and Application Effect of Recurrent Selection for Restoring Line Breeding of Rice[J]. Acta Agron Sin, 2004, 30(12): 1199 -1203 .
[10] CHEN Li;ZHANG Zheng-Sheng;HU Mei-Chun;WANG Wei;ZHANG Jian;LIU Da-Jun;ZHENG Jing;ZHENG Feng-Min;MA Jing. Genetic Linkage Map Construction and QTL Mapping for Yield and Fi-ber Quality in Upland Cotton (Gossypium hirsutum L.)[J]. Acta Agron Sin, 2008, 34(07): 1199 -1205 .