Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 2987-2993.doi: 10.3724/SP.J.1006.2022.13068

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment of genotype-independent high-efficiency transformation system in maize

XU Jie-Ting1,2,3(), LIU Xiang-Guo4(), JIN Min-Liang1,2, PAN Hong2, HAN Bao-Zhu2, LI Meng-Jiao2, YAN Shuo5, HU Guo-Qing5, YAN Jian-Bing1()   

  1. 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2WIMI Biotechnology Co., Ltd., Changzhou 213000, Jiangsu, China
    3WIMI Biotechnology Co., Ltd., Sanya 572000, Hainan, China
    4Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
    5Institute of Agricultural Sciences of Xishuangbanna Prefecture of Yunnan Province, Jinghong 666100, Yunnan, China
  • Received:2021-11-26 Accepted:2022-03-25 Online:2022-12-12 Published:2022-04-20
  • Contact: YAN Jian-Bing E-mail:xjt@wimibio.com;lxgyyj@cjaas.com;yjianbing@mail.hzau.edu.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Major Project for Developing New GM Crops(2018ZX08010-04B);National Major Project for Developing New GM Crops(2019ZX08010003-002-013);Science and Technology Innovation Program of Jilin Province(20190201290JC)

Abstract:

The reliance on receptor genotype of genetic transformation made it difficult for the transformation of commercial maize lines. Expression regulation of two important genes in plant stem cell development, Baby boom (Bbm) and Wuschel2 (Wus2), was revealed to significantly improve transformation efficiency. Several Chinese core maize inbred lines were used as receptor materials to test the transformation efficiency. Although the overexpression of Bbm and Wus2 could significantly improve the transformation efficiency, it had a negative impact on the growth and development of T0 plants. Here, a new assisted transformation technology was developed, in which a lethal gene element was added to the assist vector and the spatial expression of the two genes were regulated. The results revealed that the hybrid transformation of the assist vector and the target vector could not only successfully obtain high-quality transformation seedlings without Bbm and Wus2 assist vector in T0 generation, but also significantly improve the transformation efficiency with an average 19.5%. The application of this improved genotype-independent genetic transformation system promises maize precise improvement with higher efficiency.

Key words: maize, genetic transformation, Baby boom, Wuschel2, assist vector

Fig. 1

Schematic diagram for assist vectors and gene-targeting vectors"

Fig. 2

Generation (A-C) and differentiation (D) of callus in Zheng 58 and abnormal phenotype of T0 plant in IL3 (E) The red arrow refers to an abnormal maize tassel."

Table 1

Transformation efficiency of pWMDR001 and p193412 in maize elite inbred and receptor lines"

试验编号
Test ID
玉米自交系
Maize inbred line
载体
Vector name
起始胚数量
No. of embryos
转化阳性苗数量
No. of positive transgenic seedlings
转化效率
Transformation frequency (%)
1 郑58 Zheng 58 pWMDR001 100 24 24.0
2 X923-1 pWMDR001 50 3 6.0
3 IL3 pWMDR001 50 5 10.0
4 IL4 pWMDR001 50 9 18.0
5 京724 Jing 724 pWMDR001 50 6 12.0
6 KN5585 pWMDR001 50 9 18.0
7 B104 pWMDR001 100 18 18.0
8 郑58 Zheng 58 p193412 200 0 0
9 X923-1 p193412 100 0 0
10 IL3 p193412 100 0 0
11 IL4 p193412 100 0 0
12 京724 Jing 724 p193412 100 0 0
13 KN5585 p193412 200 21 10.5
14 B104 p193412 100 5 5.0

Fig. 3

Genotype identification after mixture transformation (A, B) and sequencing results for Waxy mutants (C) M: DL2000 marker; P: the positive control; N: the negative control."

Table 2

Transformation efficiency by mixing pWMDR002 and gene editing vector in three maize lines"

试验编号
Test ID
玉米自交系
Maize
inbred line
起始胚数量
No. of
embryos
转化阳性苗数量
No. of positive
transgenic seedlings
优质转化苗数量
No. of high-quality transformed
seedlings
优质转化苗分离率
Separation rate of high-quality transformed seedling (%)
优质转化效率
High-quality
transformation
frequency (%)
1 郑58 Zheng 58 313 24 8 33.3 2.6
2 郑58 Zheng 58 535 107 2 1.9 0.4
3 郑58 Zheng 58 828 129 56 43.4 6.8
4 郑58 Zheng 58 446 103 14 13.6 3.1
5 KN5585 210 40 5 12.5 2.4
6 KN5585 256 65 18 27.7 7.0
7 KN5585 260 51 16 31.4 6.2
8 B104 189 59 13 22.0 6.9
9 B104 242 70 11 15.7 4.5
10 B104 150 48 10 20.8 6.7

Table 3

Transformation efficiency by mixing pWMDR003 and gene editing vector in four maize inbred lines"

试验编号
Test ID
玉米自交系
Maize inbred
line
起始胚数量
No. of
embryos
转化阳性苗数量
No. of positive transgenic
seedlings
优质转化苗数量
No. of high-quality transformed seedlings
优质转化苗分离率
Separation rate of high-quality
transformed
seedling (%)
优质转化效率
High-quality transformation frequency (%)
平均优质转化效率
Average high-quality
transformation frequency (%)
1 B104 430 133 123 92.5 28.6 31.0
2 B104 100 39 39 100.0 39.0
3 B104 150 45 38 84.4 25.3
4 郑58
Zheng 58
160 18 14 77.8 8.8 16.4
5 郑58
Zheng 58
200 56 48 85.7 24.0
6 京724
Jing 724
50 6 5 83.3 10.0 11.5
7 京724
Jing 724
100 15 13 86.7 13.0
8 糯IN12
Nuo IN12
50 7 7 100.0 14.0 13.3
9 糯IN12
Nuo IN12
200 27 25 92.6 12.5
[1] 石清琢, 姜敏. 玉米转基因育种技术概述. 杂粮作物, 2005, 25: 230-231.
Shi Q Z, Jiang M. Review on selection techniques for maize transgenic. Rain Fed Crops, 2005, 25: 230-231. (in Chinese)
[2] 张英, 穆楠, 朴红梅. 转基因技术在玉米遗传育种中的应用. 生物技术通报, 2009, 25(1): 64-68.
Zhang Y, Mu N, Piao H M. Applications of transgenic technology in maize genetic breeding. Biotechnol Bull, 2009, 25(1): 64-68. (in Chinese with English abstract)
[3] 焦悦, 韩宇, 杨桥, 黄耀辉, 安吉翠, 杨亚洲, 叶纪明. 全球转基因玉米商业化发展态势概述及启示. 生物技术通报, 2021, 37(4): 164-176.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0803
Jiao Y, Han Y, Yang Q, Huang Y H, An J C, Yang Y Z, Ye J M. Commercialization development trend of genetically modified maize and the enlightenment. Biotechnol Bull, 2021, 37(4): 164-176. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0803
[4] Fromm M E, Taylor L P, Walbot V. Stable transformation of maize after gene transfer by electroporation. Nature, 1986, 319: 791-793.
doi: 10.1038/319791a0
[5] Rhodes C A, Pierce D A, Mettler I J, Mascarenhas D, Detmer J J. Genetically transformed maize plants from protoplasts. Science, 1988, 240: 204-247.
pmid: 2832947
[6] Shillito R D, Carswell G K, Johnson C M, DiMaio J J, Harms C T. Regeneration of fertile plants from protoplasts of elite inbred maize. Nat Biotechnol, 1989, 7: 581-587.
doi: 10.1038/nbt0689-581
[7] Klein T M, Kornstein L, Sanford J C, Fromm M E. Genetic transformation of maize cells by particle bombardment. Plant Physiol, 1989, 91: 440-444.
doi: 10.1104/pp.91.1.440 pmid: 16667039
[8] Gould J, Devey M, Hasegawa O, Ulian E C, Peterson G, Smith R H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol, 1991, 95: 426-434.
doi: 10.1104/pp.95.2.426 pmid: 16668001
[9] Ohta Y. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci USA, 1986, 83: 715-719.
doi: 10.1073/pnas.83.3.715
[10] Golovkin M V, Abraham M, Morocz S, Bottka S, Feher A, Dudits D. Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci, 1993, 90: 41-52.
doi: 10.1016/0168-9452(93)90154-R
[11] Gordon-Kamm W J, Spencer T M, Mangano M L, Adams T R, Daines R J, Start W G, O'Brien J V, Chambers S A, Adams Jr W R, Willetts N G, Rice T B, Mackey C J, Krueger R W, Kausch A P, Lemaux P G. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell, 1990, 2: 603-618.
doi: 10.2307/3869124
[12] Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol, 1996, 14: 745-750.
pmid: 9630983
[13] 黄敏, 杜何为, 张祖新. 玉米转基因技术研究进展. 安徽农业科学, 2004, 32: 1017-1020.
Huang M, Du H W, Zhang Z X. Transformation research progress in maize. J Anhui Agric Sci, 2004, 32: 1017-1020. (in Chinese with English abstract)
[14] 黎裕, 王天宇. 玉米转基因技术研发与应用现状及展望. 玉米科学, 2018, 26(2): 1-15.
Li Y, Wang T Y. Germplasm enhancement in maize: advances and prospects. J Maize Sci, 2018, 26(2): 1-15. (in Chinese with English abstract)
[15] Armstrong C L, Green C E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 1985, 164: 207-214.
doi: 10.1007/BF00396083 pmid: 24249562
[16] Boutilier K, Offringa R, Sharma V K, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C M, van Lammeren A A M, Miki B L A, Custers J B M, van Lookeren Campagne M M. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 2002, 14: 1737-1749.
pmid: 12172019
[17] Zuo J, Niu Q W, Frugis G, Chua N H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30: 349-359.
doi: 10.1046/j.1365-313X.2002.01289.x
[18] Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z Y, Xu D, Jones T, Gordon-Kamma W. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell, 2016, 28: 1998-2015.
doi: 10.1105/tpc.16.00124
[19] Mookkan M, Nelson-Vasilchik K, Hague J, Zhang Z J, Kausch A P. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep, 2017, 36: 1477-1491.
doi: 10.1007/s00299-017-2169-1
[20] Lowe K, La Rota M L, Hoerster G, Hastings C, Wang N, Chamberlin M, Wu E, Jones T, Gordon-Kamm W. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev Biol Plant, 2018, 54: 240-252.
doi: 10.1007/s11627-018-9905-2
[21] Liu H, Jian L, Xu J, Zhang Q, Zhang M, Jin M, Peng Y, Yan J, Han B, Liu J, Gao F, Liu X, Huang L, Wei W, Ding Y, Yang X, Li Z, Zhang M, Sun J, Bai M, Song W, Chen H, Sun X, Li W, Lu Y, Liu Y, Zhao J, Qian Y, Jackson D, Fernie A R, Yan J. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell, 2020, 32: 1397-1413.
doi: 10.1105/tpc.19.00934
[22] Sidorov V, Duncan D. Agrobacterium-mediated maize transformation: immature embryos versus callus. Methods Mol Biol, 2009, 526: 47-58.
doi: 10.1007/978-1-59745-494-0_4 pmid: 19378003
[23] Hartley R W. Barnase and barstar: two small proteins to fold and fit together. Trends Biochem Sci, 1989, 14: 450-454.
pmid: 2696173
[24] Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411-432.
doi: 10.1104/pp.105.073783
[25] Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848-857.
doi: 10.1104/pp.17.00232 pmid: 28830937
[26] Graaff E, Laux L, Rensing S A. The WUS homeobox-containing (WOX) protein family. Genome Biol, 2009, 10: 248.
doi: 10.1186/gb-2009-10-12-248 pmid: 20067590
[27] Weigel D, Jürgens G. Stem cells that make stems. Nature, 2002, 415: 751-754.
doi: 10.1038/415751a
[1] SUN Zhi-Chao, ZHANG Ji-Wang. Physiological mechanism and regulation effect of low light on maize yield formation [J]. Acta Agronomica Sinica, 2023, 49(1): 12-23.
[2] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[3] ZHANG Jing, WANG Hong-Zhang, REN Hao, YIN Fu-Wei, WU Hong-Yan, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, DAI Ai-Bin, LIU Peng. Relationship between root architecture and root pulling force of summer maize [J]. Acta Agronomica Sinica, 2023, 49(1): 188-199.
[4] WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152.
[5] SHANG Meng-Fei, SHI Xiao-Yu, ZHAO Jiong-Chao, LI Shuo, CHU Qing-Quan. Spatiotemporal variation of high temperature stress in different regions of China under climate change [J]. Acta Agronomica Sinica, 2023, 49(1): 167-176.
[6] DUAN Can-Xing, CUI Li-Na, XIA Yu-Sheng, DONG Huai-Yu, YANG Zhi-Huan, HU Qing-Yu, SUN Su-Li, LI Xiao, ZHU Zhen-Dong, WANG Xiao-Ming. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot [J]. Acta Agronomica Sinica, 2022, 48(9): 2155-2167.
[7] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[8] GUO Yao, CHAI Qiang, YIN Wen, FAN Hong. Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize [J]. Acta Agronomica Sinica, 2022, 48(8): 1871-1883.
[9] WANG Tian-Bo, HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos [J]. Acta Agronomica Sinica, 2022, 48(8): 1996-2006.
[10] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[11] YANG Ying-Xia, ZHANG Guan, WANG Meng-Meng, LU Guo-Qing, WANG Qian, CHEN Rui. Molecular characterization of transgenic maize GM11061 based on high-throughput sequencing technology [J]. Acta Agronomica Sinica, 2022, 48(7): 1843-1850.
[12] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[13] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[14] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[15] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[4] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[7] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[8] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[9] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[10] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .