Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2945-2952.doi: 10.3724/SP.J.1006.2022.13077

• RESEARCH NOTES • Previous Articles     Next Articles

Effects of cadmium stress on root growth of maize (Zea mays L.) varieties with different cadmium-tolerant at seedling stage

QU Meng-Xue(), SONG Jie, SUN Jing, HU Dan-Dan, WANG Hong-Zhang, REN Hao, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng*()   

  1. State Key Laboratory of Crop Biology / College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2021-12-23 Accepted:2022-03-28 Online:2022-11-12 Published:2022-04-20
  • Contact: LIU Peng E-mail:1053149706@qq.com;liup@sdau.edu.cn
  • Supported by:
    The Shandong Provincial Key Research and Development Project(LJNY202103);The Shandong Agriculture Research System(SDAIT-02-08)

Abstract:

Cadmium pollution in soil is a serious threat to crop production, and it is of great significance for the breeding of new cadmium-tolerant maize varieties. To study the effects on the growth and development of maize roots at seeding stage, the maize varieties with different cadmium tolerance performance were selected as experimental materials. Using cadmium-tolerant variety Xinrui 57 (XR57) and cadmium-sensitive variety Liyuan 296 (LY296) as experimental materials, the differences of root morphology, root respiration, and physiological characteristics between two varieties were investigated by hydroponic culture with different cadmium concentrations (0 mg L-1 and 10 mg L-1). The results indicated that the root of the two types of maize varieties accumulated excessive cadmium, which seriously affected the root growth. The cadmium accumulation in the root of LY296 reached 1219.77 μg plant-1, which was 16.17% higher than that of XR57, indicating the root indexes significantly lower than control. The total root length, total root surface area, total root volume, root dry weight, and lateral root density of nodal root in cadmium stress were decreased by 43.92%, 40.84%, 39.34%, 33.33%, and 62.54%, respectively. After cadmium stress, the variations of cytoprotective enzymes of the two varieties were different. The activities of SOD decreased significantly, XR57 and LY296 decreased by 43.05% and 57.54%, respectively, while the activities of POD and CAT in XR57 both increased significantly, which were 1.26 and 1.58 times higher than control, respectively. The activities of POD and CAT in LY296 had a downward trend, resulting in a significant increase in H2O2 content and aggravating oxidative stress. The contents of soluble protein and proline were increased significantly in XR57 roots after cadmium treatment, but LY296 had no significant change. The root respiration rate of both varieties were inhibited by cadmium stress, and the suppression was more pronounced in XR57, which was conducive to reducing the decrease of root biomass. XR57 also further enhanced the antioxidant capacity by increasing the proportion of alternative oxidase respiratory pathway. In conclusion, the cadmium accumulation of root significantly inhibited the growth of maize root at seedling stage, but low cadmium accumulation of the cadmium-tolerant maize variety can regulate the change of root physiological characteristics and the change of root respiration chain transfer pathway to alleviate cadmium poisoning, and it can also breathe through lower consumption by metabolic cost, maintain plant growth and development, while the cadmium-sensitive maize variety had no these advantages.

Key words: cadmium stress, maize, root morphology, antioxidant enzymes, root respiration

Table 1

Cadmium amount of maize varieties with different cadmium tolerance after cadmium stress"

处理
Treatment
镉积累量 Cd amount (μg plant-1)
根系 Root 地上部 Shoot 植株 Plant
鑫瑞57 XR57 1049.96±16.39 b 570.82±17.27 b 1626.18±9.04 b
立原296 LY296 1219.77±19.91 a 634.29±11.37 a 1854.06±12.51 a

Table 2

Effects of cadmium stress on root morphology of maize varieties with different cadmium tolerance"

处理
Treatment
根系干重
Root dry weight
(g plant-1)
总根长
Total root length
(cm plant-1)
总根表面积
Total root surface area
(cm2 plant-1)
总根体积
Total root volume
(cm3 plant-1)
鑫瑞57-CK XR57-CK 0.63±0.041 a 4326.06±247.62 a 464.21±28.49 a 4.79±0.25 a
鑫瑞57-Cd XR57-Cd 0.55±0.036 b 2667.61±148.07 b 324.89±13.55 b 3.74±0.20 b
立原296-CK LY296-CK 0.75±0.017 a 5335.16±294.61 a 549.92±40.06 a 5.49±0.34 a
立原296-Cd LY296-Cd 0.50±0.026 b 2992.03±186.44 b 325.36±28.87 b 3.33±0.19 b

Fig. 1

Effects of cadmium stress on lateral root density of maize varieties with different cadmium tolerances Treatments are the same as those given in Table 2. The error line represents the standard deviation. The bars followed by different lowercase letters represent the significant difference among the treatments in the same variety at P < 0.05. XR57: Xinrui 57; LY296: Liyuan 296."

Fig. 2

Variation of physiological indexes on roots of maize varieties with different cadmium tolerance under cadmium stress Treatments are the same as those given in Table 2. The error line represents the standard deviation. The bars followed by different lowercase letters represent the significant difference among treatments in the same variety at P < 0.05. XR57: Xinrui 57; LY29: Liyuan 296."

Fig. 3

Effects of cadmium stress on root respiration rate and AOX pathway proportion of maize varieties with different cadmium tolerances Treatments are the same as those given in Table 2. The error line represents the standard deviation. The bars followed by different lowercase letters represent the significant difference among the treatments in the same variety at P < 0.05. XR57: Xinrui 57; LY29: Liyuan 296."

Fig. 4

Effects of cadmium stress on dry matter accumulation and root-shoot ratio of maize varieties with different cadmium tolerances Treatments are the same as those given in Table 2. The error line represents the standard deviation. The bars followed by different lowercase letters represent the significant difference among the treatments in the same variety at P < 0.05. XR57: Xinrui 57; LY29: Liyuan 296."

[1] Zhang Z, Liu C F, Wang X M, Shi G R. Cadmium-induced alterations in morpho-physiology of two peanut cultivars differing in cadmium accumulation. Acta Phys Plant, 2013, 35: 2105-2112.
[2] 刘倩.山东省J县农田土壤与农作物重金属污染分析. 山东农业大学硕士学位论文, 山东泰安, 2019.
Liu Q. Analysis of Heavy Metal Pollution in Farmland Soil and Crops in J County of Shandong Province. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2019. (in Chinese with English abstract)
[3] Vasileios A, Efi L, Sabry M S, Yong S O, Abin S, Christel B, Majeti N V P, Walter W W, Jörg R. Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation: a review. Earth-Sci Rev, 2017, 171: 621-645.
doi: 10.1016/j.earscirev.2017.06.005
[4] Li C, Liu Y, Tian J, Zhu Y S, Fan J J. Changes in sucrose metabolism in maize varieties with different cadmium sensitivities under cadmium stress. PLoS One, 2020, 15: e0243835.
doi: 10.1371/journal.pone.0243835
[5] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941-1959. (in Chinese with English abstract)
[6] 王世玉, 吴文勇, 刘菲, 赵漫, 邱建强, 仵军军. 典型污灌区土壤与作物中重金属健康风险评估. 中国环境科学, 2018, 38: 1550-1560.
Wang S Y, Wu W Y, Liu F, Zhao M, Qiu J Q, Wu J J. Assessment of human health risks of heavy metals in the typical sewage irrigation areas. China Environ Sci, 2018, 38: 1550-1560. (in Chinese with English abstract)
[7] 周艳, 万金忠, 李群, 黄剑波, 张胜田, 龙涛, 邓绍坡. 铅锌矿区玉米中重金属污染特征及健康风险评价. 环境科学, 2020, 41: 4733-4739.
pmid: 33124407
Zhou Y, Wan J Z, Li Q, Huang J B, Zhang S T, Long T, Deng S P. Heavy metal contamination and health risk assessment of corn grains from a Pb-Zn mining area. Environ Sci, 2020, 41: 4733-4739. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.202004139 pmid: 33124407
[8] 管伟豆, 郭堤, 王萍, 张增强, 李荣华. 北方农田镉污染土壤玉米生产阈值及产区划分初探. 环境科学, 2021, 42: 5958-5966.
Guan W D, Guo T, Wang P, Zhang Z Z, Li R H. Investigations on the derivation of safe maize-producing threshold of soil Cd content and on classification of Cd contaminated maize-producing areas in northern China. Environ Sci, 2021, 42: 5958-5966. (in Chinese with English abstract)
doi: 10.1021/es703118s
[9] Anjum S A, Tanveer M, Hussain S, Bao M C, Wang L C, Khan I, Ullah E, Tung S A, Samad R A, Shahzad B. Cadmium toxicity in maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res, 2015, 22: 17022-17030.
doi: 10.1007/s11356-015-4882-z
[10] Sun G Y, Meng Y, Wang Y, Zhao M, Wei S, Gu W R. Exogenous hemin optimized maize leaf photosynthesis, root development, grain filling, and resource utilization on alleviating cadmium stress under field condition. J Soil Sci Plant Nutr, 2021, 22: 631-646.
doi: 10.1007/s42729-021-00674-y
[11] 王学华, 戴力. 作物根系镉滞留作用及其生理生化机制. 中国农业科学, 2016, 49: 4323-4341.
Wang X H, Dai L. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots. Sci Agric Sin, 2016, 49: 4323-4341. (in Chinese with English abstract)
[12] 束红梅, 郭书巧, 巩元勇, 倪万潮, 沈新莲, 张香桂, 徐鹏. 盐胁迫对作物根系的影响及基因工程改良. 分子植物育种, 2013, 11: 657-662.
Shu H M, Guo S Q, Gong Y Y, Ni W C, Shen X L, Zhang X G, Xu P. The influence of salt stress on crop root and its genetic improvement. Mol Plant Breed, 2013, 11: 657-662. (in Chinese with English abstract)
[13] 彭鸥, 刘玉玲, 铁柏清, 董思俊, 魏祥东, 刘孝利, 周细红. 施硅对镉胁迫下水稻镉吸收和转运的调控效应. 生态学杂志, 2019, 38: 1049-1056.
Peng O, Liu Y L, Tie B Q, Dong S J, Wei X D, Liu X L, Zhou X H. Effects of silicon application on cadmium uptake and translocation of rice under cadmium stress. Chin J Ecol, 2019, 38: 1049-1056. (in Chinese with English abstract)
[14] Zhang L G, Zhang C, Du B Y, Lu B X, Zhou D M, Zhou J, Zhou J. Effects of node restriction on cadmium accumulation in eight Chinese wheat (Triticum turgidum) cultivars. Sci Total Environ, 2020, 725: 138358-138366.
doi: 10.1016/j.scitotenv.2020.138358
[15] Javed M T, Akram M S, Tanwir K, Chaudhary H J, Ali Q, Stoltz E, Lindberg S. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars. Ecotoxic Environ Saf, 2017, 141: 216-225.
doi: 10.1016/j.ecoenv.2017.03.027
[16] Ghulam H A, Javaid A, Muhammad A, Waqas M, Shafaqat A, Chen Z H, Zhang G P. Morpho-physiological and micrographic characterization of maize hybrids under NaCl and Cd stress. Plant Growth Regul, 2015, 75: 115-122.
doi: 10.1007/s10725-014-9936-6
[17] 邵小杰, 杨洪强, 乔海涛, 张龙, 由淑贞. 氯化镉对葡萄根系线粒体特性与根系活力的影响. 应用生态学报, 2009, 20: 1390-1394.
Shao X J, Yang H Q, Qiao H T, Zhang L, You S Z. Effects of CdCl2 on grape root mitochondrial characteristic sand root activity. Chin J Appl Ecol, 2009, 20: 1390-1394. (in Chinese with English abstract)
[18] Srivastava R K, Rajpoot R, Pandey P, Rani A, Dubey R S. Cadmium alters mitochondrial membrane potential, inhibits electron transport chain activity and induces callose deposition in rice seedlings. J Plant Growth Regul, 2018, 37: 335-344.
doi: 10.1007/s00344-017-9726-2
[19] 杨兰芳, 蔡祖聪, 祁士华. 氮肥用量对玉米不同生育期光合产物运往地下的影响. 作物学报, 2006, 32: 1802-1808.
Yang L F, Cai Z C, Qi S H. Effects of nitrogen rate on assimilate transportation to underground at different maize growing stages. Acta Agron Sin, 2006, 32: 1802-1808. (in Chinese with English abstract)
[20] 曹樱迪.镉对玉米富友9和沈玉33萌发期生理代谢特征的影响. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2020.
Cao Y D. Effects of Cadmium on Physiological and Metabolic Characteristics of Fuyou 9 and Shenyu 33 Maize During Germination. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2020. (in Chinese with English abstract)
[21] Lynch J P. Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. Plant Cell Environ, 2015, 38: 1775-1784.
doi: 10.1111/pce.12451
[22] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 164-167, 184, 258-260.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 164-167, 184, 258-260. (in Chinese)
[23] 陈顺钰.长汀稀土矿废弃地植被恢复优势树种种子萌发对镉和酸胁迫的响应. 福建农林大学硕士学位论文, 福建福州, 2019.
Chen S Y. Response of Seed Germination of Dominant Tree Species to Cd and Acid Stress in Wasteland of Changting Rare Earth Mine. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China 2019. (in Chinese with English abstract)
[24] 夏雪姣, 菅明阳, 韩玉翠, 翟晓光, 赵丹阳, 朱婷, 辛芳, 曹冠男, 丁勤, 马翎健. 镉胁迫对小麦形态发育及生理代谢的影响. 农业生物技术学报, 2018, 26: 1494-1503.
Xia X J, Jian M Y, Han Y C, Zhai X G, Zhao D Y, Zhu T, Xin F, Cao G N, Ding Q, Ma L J. Effects of cadmium stress on morphological development and physiological metabolism in wheat (Triticum aestivum). J Agric Biotechnol, 2018, 26: 1494-1503. (in Chinese with English abstract)
[25] 张玲, 李俊梅, 王焕校. 镉胁迫下小麦根系的生理生态变化. 土壤通报, 2002, 33: 61-65.
Zhang L, Li J M, Wang H X. Physiological and ecological responses of wheat (Triticum aestivum L.) root to cadmium stress. Chin J Soil Sci, 2002, 33: 61-65. (in Chinese with English abstract)
[26] Fan X Y, Wen X H, Huang F, Cai Y X, Cai K Z. Effects of silicon on morphology, ultrastructure and exudates of rice root under heavy metal stress. Acta Physiol Plant, 2016, 38: 197.
doi: 10.1007/s11738-016-2221-8
[27] 孟瑶.氯化血红素(Hemin)增强玉米耐镉胁迫的生理生态机制及其大田验证研究. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2020.
Meng Y.Mitigation Effect and Physiological and Ecological Regulation Mechanism of Exogenous Hemin on Maize Seedling under Cadmium Stress. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2020. (in Chinese with English abstract)
[28] 张金尧.活性氧介导缺锌胁迫下玉米根系生长发育的研究. 华中农业大学博士学位论文, 湖北武汉, 2019.
Zhang J Y.Study on Involment of Reactive Oxygen Species in Root Development of Maize under Zinc Deficiency. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019. (in Chinese with English abstract)
[29] Potters G, Pasternak T P, Guisez Y, Jansen M A K. Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ, 2009, 32: 158-169.
doi: 10.1111/j.1365-3040.2008.01908.x
[30] 曹莹, 周国驰, 王晓旭, 于慧佳. 生物炭对镉胁迫下花生根系形态学特性及根镉含量的影响. 土壤通报, 2018, 49: 197-203.
Cao Y, Zhou G C, Wang X X, Yu H J. Effects of biochar on root morphology and cadmium content in peanut under cadmium stress. Chin J Soil Sci, 2018, 49: 197-203. (in Chinese with English abstract)
doi: 10.1046/j.1365-2389.1998.00149.x
[31] Bahn M, Lattanzi F A, Hasibeder R, Wild B, Koranda M, Danese V, Brüggemann N, Schmitt M, Siegwolf R, Richter A. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytol, 2013, 198: 116-126.
doi: 10.1111/nph.12138
[32] 何俊瑜, 任艳芳, 王阳阳, 李兆君. 不同耐性水稻幼苗根系对镉胁迫的形态及生理响应. 生态学报, 2011, 31: 522-528.
He J Y, Ren Y F, Wang Y Y, Li Z J. Root morphological and physiological responses of rice seedings with different tolerance to cadmium stress. Acta Ecol Sin, 2011, 31: 522-528. (in Chinese with English abstract)
[33] 吕冬梅, 朱广龙, 王玥, 施雨, 卢发光, 任桢, 刘昱茜, 顾立峰, 卢海潼, Irshad A, 焦秀荣, 孟天瑶, 周桂生. 苗期重金属胁迫下蓖麻生长、生理和重金属积累效应. 作物学报, 2021, 47: 728-737.
doi: 10.3724/SP.J.1006.2021.04146
Lyu D M, Zhu G L, Wang Y, Shi Y, Lu F G, Ren Z, Liu Y Q, Gu L F, Lu H T, Irshad A, Jiao X R, Meng T Y, Zhou G S. Growth, physiological, and heavy metal accumulation traits at seedling stage under heavy metal stress in castor (Ricinus communis L.). Acta Agron Sin, 2021, 47: 728-737. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04146
[34] 刘彩凤, 史刚荣, 余如刚, 张铮. 硅缓解植物镉毒害的生理生态机制. 生态学报, 2017, 37: 7799-7810.
Liu C F, Shi G R, Yu R G, Zhang Z. Ecophysiological mechanisms of silicon-induced alleviation of cadmium toxicity in plants: a review. Acta Ecol Sin, 2017, 37: 7799-7810. (in Chinese with English abstract)
[35] 李志霞, 秦嗣军, 吕德国, 聂继云. 植物根系呼吸代谢及影响根系呼吸的环境因子研究进展. 植物生理学报, 2011, 47: 957-966.
Li Z X, Qi S J, Lyu D G, Nie J Y. Research progress in root respiratory metabolism of plant and the environmental influencing factors. Plant Physiol J, 2011, 47: 957-966. (in Chinese with English abstract)
[36] 詹洁, 寇瑞杰, 李创珍, 何虎翼, 何龙飞. 铝胁迫对花生根尖线粒体膜生理特性的影响. 作物学报, 2009, 35: 1059-1067.
Zhan J, Kou R J, Li C Z, He H Y, He L F. Effects of aluminum on physiological characteristics of mitochondrial membrane in peanut root tips. Acta Agron Sin, 2009, 35: 1059-1067. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01059
[37] Astolfi S, Zuchi S, Passera C. Effect of cadmium on H+ ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants. Plant Sci, 2005, 169: 361-368.
doi: 10.1016/j.plantsci.2005.03.025
[38] Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212: 475-486.
pmid: 11525504
[39] 谢佳佳.交替呼吸途径在环境胁迫下通过调节抗氧化防御水平来维持PSII的运行. 西北师范大学硕士学位论文, 甘肃兰州, 2018.
Xie J J. Alternative Respiratory Pathways Maintain PSII Function by Regulating Antioxidant Defenses under Environmental Stress. MS Thesis of Northwest Normal University, Lanzhou, Gansu, China, 2018. (in Chinese with English abstract)
[40] Garmash E V, Golovko T K. Effect of cadmium on growth and respiration of barley plants grown under two temperature regimes. Russian J Plant Physiol, 2009, 56: 343-347.
doi: 10.1134/S1021443709030066
[1] DUAN Can-Xing, CUI Li-Na, XIA Yu-Sheng, DONG Huai-Yu, YANG Zhi-Huan, HU Qing-Yu, SUN Su-Li, LI Xiao, ZHU Zhen-Dong, WANG Xiao-Ming. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot [J]. Acta Agronomica Sinica, 2022, 48(9): 2155-2167.
[2] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[3] GUO Yao, CHAI Qiang, YIN Wen, FAN Hong. Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize [J]. Acta Agronomica Sinica, 2022, 48(8): 1871-1883.
[4] WANG Tian-Bo, HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos [J]. Acta Agronomica Sinica, 2022, 48(8): 1996-2006.
[5] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[6] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[7] YANG Ying-Xia, ZHANG Guan, WANG Meng-Meng, LU Guo-Qing, WANG Qian, CHEN Rui. Molecular characterization of transgenic maize GM11061 based on high-throughput sequencing technology [J]. Acta Agronomica Sinica, 2022, 48(7): 1843-1850.
[8] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[9] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[10] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[11] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[12] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[13] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[14] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[15] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .