Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2265-2273.doi: 10.3724/SP.J.1006.2022.14109

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional verification of GhIQM1 gene of cotton in response to Verticillium wilt

LI Ming-Jiang1(), LEI Jian-Feng2, ZULIPIYE·Tuoheniyazi 2, DAI Pei-Hong1, LIU Chao1,*(), LIU Xiao-Dong1,*()   

  1. 1. College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2. College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2021-06-23 Accepted:2022-01-05 Online:2022-09-12 Published:2022-02-09
  • Contact: LIU Chao,LIU Xiao-Dong E-mail:1091019753@qq.com;xiaodongliu75@aliyun.com;liuch_86@126.com
  • Supported by:
    Innovative Team Foundation of Biology of Xinjiang Agricultural University(ITB202108)

Abstract:

Cotton is an important economic crop in China, and Verticillium wilt is the main disease in cotton production, which seriously endangers cotton yield and fiber quality. In this project, GhIQM1, encode a Ca2+-independent calmodulin-binding protein in cotton, was screened out by transcriptome analysis. The gene was up-regulated by Verticillium dahliae and salicylic acid treatment in cotton. The function of GhIQM1 was explored in cotton in response to Verticillium wilt using virus-induced gene silencing (VIGS) technology. The results showed that disease index (DI), the symptoms of Verticillium wilt, the degree of browning of vascular tissue, and the relative fungal biomass pathogen accumulation in vivo in the GhIQM1-silenced plants (TRV:GhIQM1) were significantly lower than those in the TRV:00 cotton plant. The qRT-PCR results revealed that the gene expression level of NPR1, NPR3, and PR5, involved in the salicylic acid pathway, were significantly higher than the control after inoculation of Verticillium dahliae. The above results indicate that the GhIQM1 negatively regulates the resistance of cotton to Verticillium wilt through suppressing SA pathway.

Key words: cotton, Verticillium wilt, GhIQM1, gene silencing

Table 1

Primer sequences used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Application
GhIQM1-F GAATTCAGACCCGTTAGTGAGCTTG 片段扩增Gene fragment amplification
GhIQM1-R GGTACCCTCAAGATTTACTTCTTTCCC 基因片段扩增Gene fragment amplification
qGhIQM1-F ATCAGCCTGGCAACAAATTC 荧光定量Quantitative real time-PCR
qGhIQM1-R CAGCTTTGCCGTTTCTCAAA 荧光定量Quantitative real time-PCR
ITS-F AAAGTTTTAATGGTTCGCTAAGA 荧光定量Quantitative real time-PCR
VE1-R CTTGGTCATTTAGAGGAAGTAA 荧光定量Quantitative real time-PCR
SA-GhNPR1-F CTAGCTTGCGGAGGGATTGATACC 荧光定量Quantitative real time-PCR
SA-GhNPR1-R GAGATGGCTGACCTGTCAAACTGC 荧光定量Quantitative real time-PCR
SA-GhNPR3-F GCGGAGAGCATTCGGTTACT 荧光定量Quantitative real time-PCR
SA-GhNPR3-R GCTCAACATCGTCGGAGTCT 荧光定量Quantitative real time-PCR
SA-GhPR5-F TGAGTGCTCCTACACCGTCT 荧光定量Quantitative real time-PCR
SA-GhPR5-R CGACCCCAAATACGAGCCAT 荧光定量Quantitative real time-PCR
JA-GhPDF1.2-F CTGTGGTAGCGGATGGTGATAAG 荧光定量Quantitative real time-PCR
JA-GhPDF1.2-R GTGCAGACGCATTTGCGAAGGAA 荧光定量Quantitative real time-PCR
JA-GhAOC-F AATAGAGCATAAACCCGAAATGAAAG 荧光定量Quantitative real time-PCR
JA-GhAOC-R CAAAAATGCCAGACCCACCAGTA 荧光定量Quantitative real time-PCR
JA-GhAOS-F TGCCACCTGGTCCTTTCATTTC 荧光定量Quantitative real time-PCR
JA-GhAOS-R GCGTGTTTGGGCTCGGAAGGGTCG 荧光定量Quantitative real time-PCR
GhUBQ7-F GAAGGCATTCCACCTGACCAAC 内参基因Reference gene
GhUBQ7-R CTTGACCTTCTTCTTCTTGTGCTTG 内参基因Reference gene

Fig. 1

Relative expression pattern of GhIQM1 genes CK: control; V991: Verticillium dahliae treatment; SA: salicylic acid treatment. ** and *** mean significant difference at the 0.01 and 0.001 probability levels, respectively. Three biological replicates are for each set of samples."

Fig. 2

Construction of VIGS vector of GhIQM1 gene and its silencing efficiency test A: M: Trans2K Plus II DNA marker; a: PCR product amplification of GhIQM1 fragment; b: restriction digestion verification of pTRV2-GhIQM1 vector. B: silent GhCLA1 gene phenotype; C: GhCLA1 and GhIQM1 gene silencing efficiency detection. * and ** indicate significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 3

Silencing GhIQM1 enhances cotton resistance to Verticillium dahliae A: control plant TRV:00 and silent plant TRV:GhIQM1 plant disease after 20 days of V991 infection; B: TRV:00 and TRV: disease index of GhIQM1 plant 15 days after V991 infection; C: 15 days after inoculation, TRV:00 and TRV:GhIQM1 plant vascular bundle browning situation; D: TRV:00 and TRV:GhIQM1 relative biological content of Verticillium dahliae 15 days after inoculation; E: twenty days after inoculation with Verticillium dahliae, TRV:00 and TRV:GhIQM1 cotton plant stem recovery culture experiment. ** means significant difference between TRV:00 and TRV: GhIQM1 at the 0.01 probability level."

Fig. 4

Relative expression patterns of SA/JA signal pathway related genes after GhIQM1 gene silencing TRV:00: control; TRV:GhIQM1: silent group. *, **, and *** mean significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively."

[1] Klosterman S J, Atallah Z K, Vallad G, Subbarao K V. Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol, 2009, 47: 39-62.
doi: 10.1146/annurev-phyto-080508-081748 pmid: 19385730
[2] Vallad G E, Qin Q M, Grube R, Subbarao K V, Hayes R J. Characterization of race-specific interactions among isolates of Verticillium dahliae pathogenic on lettuce. Phytopathology, 2006, 96: 1380-1387.
doi: 10.1094/PHYTO-96-1380 pmid: 18943671
[3] 马存, 简桂良, 郑传临. 中国棉花抗枯、黄萎病育种50年. 中国农业科学, 2002, 35: 508-513.
Ma C, Jian G L, Zheng C L. 50 years of breeding for resistance to blight and Verticillium wilt of cotton in China. Sci Agric Sin, 2002, 35: 508-513. (in Chinese with English abstract)
[4] Bari R, Jones J. Role of hormones in plant defense responses. Plant Mol Biol, 2009, 69: 473-488.
doi: 10.1007/s11103-008-9435-0
[5] Vlot A C, Klessig D F, Park S W. Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol, 2008, 11: 436-442.
doi: 10.1016/j.pbi.2008.05.003
[6] Liu T, Song T, Zhang X, Yuan H, Su L, Li W, Xu J, Liu S, Chen L, Chen T, Zhang M, Gu L, Zhang B, Dou D. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat Commun, 2014, 5: 4686.
doi: 10.1038/ncomms5686
[7] Ding L N, Xu H B, Yi H Y, Yang L M, Kong Z X, Zhang L X, Xue S L, Jia H Y, Ma Z Q. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One, 2011, 6: e19008.
[8] Fradin E F, Abd-El-Haliem A, Masini L, Vanden Berg G C, Joosten M H, Thomma B P. Interfamily transfer of tomato ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol, 2011, 156: 2255-2265.
doi: 10.1104/pp.111.180067
[9] Gao W, Long L, Zhu L, Xu L, Gao W, Sun L, Liu L, Zhang X. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics, 2013, 12: 3690-3703.
doi: 10.1074/mcp.M113.031013
[10] Zhang Y, Wang X F, Ding Z G, Ma Q, Zhang G R, Zhang S L, Li Z K, Wu L Q, Zhang G Y, Ma Z Y. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC Genomics, 2013, 14: 637.
doi: 10.1186/1471-2164-14-637 pmid: 24053558
[11] Xu L, Zhang W, He X, Liu M, Zhang K, Shaban M, Sun L, Zhu J, Luo Y, Yuan D, Zhang X, Zhu L. Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies. J Exp Bot, 2014, 65: 6679-6692.
doi: 10.1093/jxb/eru393
[12] Shaban M, Miao Y, Ullah A, Khan A Q, Menghwar H, Khan A H, Ahmed M M, Tabassum M A, Zhu L. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae. Plant Physiol Biochem, 2018, 125: 193-204.
doi: 10.1016/j.plaphy.2018.02.011
[13] Dhar N, Chen J Y, Subbarao K V, Klosterman S J. Hormone signaling and its interplay with development and defense responses in Verticillium-plant interactions-3. Front Plant Sci, 2020, 38: 173-183.
[14] Li X, Zhu L, Tu L, Guo X, Lu L, Sun L, Wei G, Zhang X. Differential gene expression in cotton defense response to Verticillium dahliae by SSH. J Phytopathol, 2011, 159: 606-615.
doi: 10.1111/j.1439-0434.2011.01813.x
[15] Reddy A, Ali G S, Celesnik H, Day I S. Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell, 2011, 23: 2010-2032.
doi: 10.1105/tpc.111.084988
[16] Yuan P, Jauregui E, Du L, Tanaka K, Poovaiah B. Calcium signatures and signaling events orchestrate plant-microbe interactions. Curr Opin Plant Biol, 2017, 38: 173-183.
doi: 10.1016/j.pbi.2017.06.003
[17] Yasuhiro K, Ken S, Cyril Z. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol, 2015, 56: 1472-1480.
doi: 10.1093/pcp/pcv063 pmid: 25941234
[18] Blume B. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell Online, 2000, 12: 1425-1440.
doi: 10.1105/tpc.12.8.1425
[19] Atkinson M M, Keppler L D, Orlandi E W, Mischke B. Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco. Plant Physiol, 1990, 92: 215-221.
doi: 10.1104/pp.92.1.215 pmid: 16667249
[20] Tian W, Hou C, Ren Z, Wang C, Zhao F, Ahlbeck D, Hu S, Zhang L, Niu Q, Li L. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature, 2019, 572: 131-135.
doi: 10.1038/s41586-019-1413-y
[21] Wei C C, Fabry E, Hay E, Lloyd L, Kaufman N, Yang Y P, Stuehr D J. Metal binding and conformational studies of the calcium binding domain of NADPH oxidase 5 reveal its similarity and difference to calmodulin. J Biomol Struct Dynamics, 2020, 38: 2352-2368.
doi: 10.1080/07391102.2019.1633409
[22] Ma H, Feng L, Chen Z, Chen X, Zhao H, Xiang Y. Genome-wide identification and expression analysis of the IQD gene family in Populus trichocarpa. Plant Sci, 2014, 229: 96-110.
doi: 10.1016/j.plantsci.2014.08.017
[23] Defalco T, Bender K, Snedden W. Breaking the code: Ca2+ sensors in plant signalling. Biochem J, 2010, 425: 27-40.
doi: 10.1042/BJ20091147
[24] Abel S, Bürstenbinder K, Müller J. The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking. Plant Signal Behavior, 2013, 8: e24369.
[25] Zhou Y P, Duan J, Fujibe T, Yamamoto K T, Tian C E. AtIQM1, a novel calmodulin-binding protein, is involved in stomatal movement in Arabidopsis. Plant Mol Biol, 2012, 79: 333-346.
doi: 10.1007/s11103-012-9915-0
[26] Zhou Y P, Chen Y Z, Yamamoto K T, Duan J, Tian C E. Sequence and expression analysis of the Arabidopsis IQM family. Acta Physiol Plant, 2010, 32: 191-198.
doi: 10.1007/s11738-009-0398-9
[27] Lyu T, Li X, Fan T, Tian H, Luo C E. The calmodulin-binding protein IQM1 interacts with CATALASE2 to affect pathogen defense. Plant Physiol, 2019, 181: 1314-1327.
doi: 10.1104/pp.19.01060
[28] 王龙涛. 拟南芥IQM2基因功能的研究. 华南农业大学硕士学位论文, 广东广州, 2012.
Wang L T. Study on the Function of Arabidopsis IQM2 gene. MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2012. (in Chinese with English abstract)
[29] 陈羽中, 周玉萍, 叶蕙, 桂林, 郭培国, 田长恩. 拟南芥IQM2 cDNA的克隆与生物信息学分析. 植物科学学报, 2010, 28: 353-358.
Chen Y Z, Zhou Y P, Ye H, Gui L, Guo P G, Tian C E. Cloning and bioinformatics analysis of Arabidopsis IQM2 cDNA. Plant Sci J, 2010, 28: 353-358. (in Chinese with English abstract)
[30] 徐浩. 拟南芥IQM3参与光周期成花调控的初步研究. 广州大学硕士学位论文, 广东广州, 2019.
Xu H. Preliminary Study on the Involvement of Arabidopsis IQM3in the Regulation of Photoperiod Flower Formation. MS Thesis of Guangzhou University, Guangzhou, Guangdong, China, 2019. (in Chinese with English abstract)
[31] 弓路平. 拟南芥IQM5参与成花调控的分子遗传学研究. 广州大学硕士学位论文, 广东广州, 2017.
Gong L P. Molecular Genetics of Arabidopsis IQM5 Involved in Floral Regulation. MS Thesis of Guangzhou University, Guangzhou, Guangdong, China, 2019. (in Chinese with English abstract)
[32] 弓路平, 萧文慧, 周玉萍, 黄小玲, 田长恩. 拟南芥IQM5.2的克隆、表达及其生物信息学分析. 生物技术通报, 2016, 32(5): 69-74.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.05.009
Gong L P, Xiao W H, Zhou Y P, Huang X L, Tian C E. Cloning, expression and bioinformatics analysis of Arabidopsis IQM5.2. Biotechnol Bull, 2016, 32(5): 69-74. (in Chinese with English abstract)
[33] 冯奕嘉, 徐浩, 范甜, 吕天晓, 谢楚萍, 周玉萍, 田长恩. 拟南芥IQM6突变推迟远轴面表皮毛的发生. 植物生理学报, 2019, 55: 729-735.
Feng Y J, Xu H, Fan T, Lyu T X, Xie C P, Zhou Y P, Tian C E. The Arabidopsis IQM6 mutation delays the occurrence of abaxial epidermal hairs. Plant Physiol J, 2019, 55: 729-735. (in Chinese with English abstract)
[34] Yang J, Zhang Y, Wang X, Wang X, Li Z, Wu J, Wang G, Wu L, Zhang G, Mal Z. HyPRP1 performs a role in negatively regulating cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation. BMC Plant Biol, 2018, 18: 339.
doi: 10.1186/s12870-018-1565-1 pmid: 30526498
[35] Xia M, Sherlock J, J Hegerich P, You X Q, Lee K, KWalworth C, Spier E. DataAssist—data analysis software for TaqMan real- time PCR data. In: Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I, Hong Kong, China, 2010.
[36] Zhang Y, Wang X, Rong W, Yang J, Ma Z. Island cotton enhanced disease susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to Verticillium dahliae by regulating the SA level and H2O2 accumulation. Front Plant Sci, 2016, 7: 1830.
doi: 10.3389/fpls.2016.01830 pmid: 28018374
[37] Pieterse C, Leon-Reyes A, Sjoerd V, Verhage A, Wees S V. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 2009, 5: 308-316.
doi: 10.1038/nchembio.164 pmid: 19377457
[38] Tada Y, Spoel S H, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. Plant immunity requires conformational charges of NPR1 via S-Nitrosylation and thioredoxins. Science, 2008, 321: 952-956.
doi: 10.1126/science.1156970
[39] Cao H. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 1994, 6: 1583-1592.
doi: 10.2307/3869945
[40] Hui C, Glazebrook J, Clarke J D, Volko S, Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997, 88: 57-63.
doi: 10.1016/S0092-8674(00)81858-9
[41] Cao H, Li X, Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA, 1998, 95: 6531-6536.
doi: 10.1073/pnas.95.11.6531
[42] Lin W C, Lu C F, Wu J W, Cheng M L, Lin Y M, Yang N S, Black L, Green S K, Wang J F, Cheng C P. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res, 2004, 13: 567-581.
pmid: 15672838
[43] Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact, 2005, 18: 511-520.
doi: 10.1094/MPMI-18-0511
[44] Malnoy M, Jin Q, Borejszawysocka E E, He S Y, Aldwinckle H S. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol Plant Microbe Interact, 2007, 20: 1568-1580.
doi: 10.1094/MPMI-20-12-1568
[45] Fu Z Q, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel S H, Tada Y, Zheng N. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 2012, 486: 228-232.
doi: 10.1038/nature11162
[46] Du L, Ali G S, Simons K A, Hou J, Yang T, Reddy A S, Poovaiah B W. Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature, 2009, 457: 1154-1158.
doi: 10.1038/nature07612
[47] Shigenaga A M, Berens M L, Tsuda K, Argueso C T. Towards engineering of hormonal crosstalk in plant immunity. Curr Opin Plant Biol, 2017, 38: 164-172.
doi: 10.1016/j.pbi.2017.04.021
[1] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[2] GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114.
[3] ZHU Ling-Xiao, SONG Shi-Jia, LI Hao-Ran, SUN Hong-Chun, ZHANG Yong-Jiang, BAI Zhi-Ying, ZHANG Ke, LI An-Chang, LIU Lian-Tao, LI Cun-Dong. Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton [J]. Acta Agronomica Sinica, 2022, 48(7): 1800-1812.
[4] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[5] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[6] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[7] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[8] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[9] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[10] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[11] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[12] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[13] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[14] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[15] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!