Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 2967-2977.doi: 10.3724/SP.J.1006.2022.14210

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

High throughput identification of cotton gene via screening cotton cDNA library of virus induced gene silencing

LIANG Xi-Tong1,2(), GAO Xian-Yuan1, ZHOU Lin1, MU Chun1, DU Ming-Wei1, LI Fang-Jun1(), TIAN Xiao-Li1(), LI Zhao-Hu1   

  1. 1Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2Yancheng Teachers University, Yancheng 224007, Jiangsu, China
  • Received:2021-11-10 Accepted:2022-03-25 Online:2022-12-12 Published:2022-04-19
  • Contact: LI Fang-Jun,TIAN Xiao-Li E-mail:liangxt116@163.com;lifangjun@cau.edu.cn;tianxl@cau.edu.cn
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Regulation of Stress Resistance of Cash Crops in Field”(2018YFD1000903)

Abstract:

To rapidly and efficiently explore functional genes in cotton, we have developed a functional genomic screen based on virus induced gene silencing (VIGS) assays to identify key players controlling cotton seedling growth and salt response with Gossypium hirsutum Xinshi 17 as plant materials and GhCLA1 as a visual marker gene. After 7-14 days of Agrobacterium- mediated transformation of cotton VIGS cDNA library, the phenotype of seedling growth and salt stress response were recorded. A total of eight genes related to seedling growth and four genes related to salt stress response were obtained. In hydroponic conditions, silencing of GhANT17, GhSTP14, GhUSPA, GhFES1, GhS15-4, and GhRBL8 significantly hindered shoot growth, while the silencing of GhOIDO promoted plant growth. GhRBCSC1-silenced plants had albino leaves. Under salt stress, silencing of GhATCYP1 and GhSAC52 improved salt tolerance. GhPSBW- and GhRBCSC2-silenced plants were more sensitive to salt stress compared with the control plants. Here, we established a technical system for high-throughput screening of functional genes in cotton, which provided a feasible tool for rapid mining and research of cotton functional genomic.

Key words: cotton, VIGS cDNA library, salt tolerant, seedling growth

Table 1

Primers for silence efficiency of candidate genes screened by VIGS cDNA library"

基因Gene 引物Primer (5°-3°)
GhACTIN9 F: GCCTTGGACTATGAGCAGGA; R: AAGAGATGGCTGGAAGAGGA
GhRBCSC1 F: GCCAACAACGACATCACTTC; R: ATCGGGCAGGTATGAGAGAG
GhANT17 F: ATGGTGACCTCAGTGCTACC; R: ACCTCTTTGTCCTCCGACTC
GhSTP14 F: TAGAAACAAAGGGCGTCG; R: CGAAAGATACAAGGGAACTGC
GhUSPA F: CGGTGTAGCAGTGGATTACTC; R: AGACTCGTCGCTTTGATGG
GhFES1 F: CAGGGTTGATTTGGTCCAC; R: CAGATTCCTTGAGTTTAGCCG
GhS15-4 F: CGATTTGGATGCTCTCCTTG; R: ACGCAGGTGGGTTCTAACTG
GhRBL8 F: CCACCCTTTCCGTTACAAG; R: GGCAACACATTTCCAACC
GhOIDO1 F: CAGCCATTGAGTTCCGTTC; R: TTCTGCTTCGTCTCCACTG
GhATCYP1 F: AGGAGTGTTCCAGGATTGC; R: CGGGCTATCTTGTAACCAAAG
GhSAC52 F: ATTGGAGGCACATTGAGC; R: ACGAGAACAGAGTAAGATTGGC
GhPSBW F: AAAGGACCCGTTGAAAGG; R: GGCAAGTGTAGAAGGAGTTGAC
GhRBCSC2 F: ACAGATACTCAACCCAACGG; R: TTCTTCGGTGGTCCCTTAC

Table 2

Annotation of candidate genes screened by VIGS cDNA library"

序号No. 基因ID
Gene ID
基因注释
Gene annotation
1 Gohir.D09G2158, Gohir.A09G213678 40S核糖体蛋白S15-4 40S ribosomal protein S15-4
2 Gohir.D05G2788, Gohir.A05G2771 60S核糖体蛋白L10 60S ribosomal protein L10-like
3 Gohir.A02G1627, Gohir.D03G0176 60S核糖体蛋白L8 60S ribosomal protein L8
4 Gohir.A11G2127, Gohir.D11G2105 富含ACT结构域的蛋白ACR10 ACT domain-containing protein ACR10-like
5 Gohir.D01G0567 酰基载体蛋白2 Acyl carrier protein 2
6 Gohir.D13G0291 邻氨基苯甲酸合成酶β亚基2 Anthranilate synthase beta subunit 2
7 Gohir.D12G0929, Gohir.A12G0833 ATP合酶亚单位O ATP synthase subunit O
8 Gohir.D09G0993, Gohir.A09G0999 钙调素 Calmodulin
9 Gohir.A13G0243 叶绿体叶绿素II A-B结合蛋白 Chloroplast chlorophyl II A-B binding protein
10 Gohir.A12G2050, Gohir.D12G2242 真核细胞翻译起始因子2的α亚基
Eukaryotic translation initiation factor 2 subunit alpha
11 Gohir.A11G0557 Hsp70核苷酸交换因子fes1 Hsp70 nucleotide exchange factor fes1
12 Gohir.D08G1902 白细胞花青素双加氧酶ANT17 Leucoanthocyanidin dioxygenase ANT17
13 Gohir.D01G1750 苹果酸脱氢酶 Malate dehydrogenase
14 Gohir.A01G2084 非共生血红蛋白2 Non-symbiotic hemoglobin 2
15 Gohir.D04G0066 寡糖基转移酶复合物亚单位OSTC
Oligosaccharyltransferase complex subunit OSTC-like
16 Gohir.A13G2343 氧戊二酸/铁依赖性加氧酶 Oxoglutarate/iron-dependent oxygenase
17 Gohir.D01G1561, Gohir.A01G1642 肽基脯氨酰顺反异构酶 Peptidyl-prolyl cis-trans isomerase
18 Gohir.D07G1064, Gohir.A07G1022 肽基脯氨酰顺反异构酶CYP71
Peptidyl-prolyl cis-trans isomerase CYP71
19 Gohir.D12G0718, Gohir.A02G1550 肽基脯氨酰顺反异构酶FKBP13
Peptidyl-prolyl cis-trans isomerase FKBP13
20 Gohir.A02G0314 光系统I反应中心XI亚基 Photosystem I reaction centre subunit XI
21 Gohir.D04G0349, Gohir.A05G3807 光系统II氧释放增强蛋白2 Photosystem II oxygen-evolving enhancer protein 2
22 Gohir.A08G1884, Gohir.D08G2068 光系统II反应中心W蛋白 Photosystem II reaction center W protein
23 Gohir.D08G2068, Gohir.A11G1277 光系统II反应中心W蛋白 Photosystem II reaction center W protein
24 Gohir.D13G2157 2-酮戊二酸依赖性双加氧酶AOP1
Probable 2-oxoglutarate-dependent dioxygenase AOP1
25 Gohir.D05G3057 功能未知蛋白质DUF1749 Protein of unknown function DUF1749
26 Gohir.D11G0269
Gohir.A11G0277
蛋白酪氨酸磷酸酶线粒体1亚型1
Protein-tyrosine phosphatase mitochondrial 1-like isoform 1
27 Gohir.D02G1705 丙酮酸脱氢酶E1组分α-1亚基
Pyruvate dehydrogenase E1 component subunit alpha-1
28 Gohir.D11G1696, Gohir.A11G1632 核酮糖二磷酸羧化酶小链 Ribulose bisphosphate carboxylase small chain
29 Gohir.D11G1697 核酮糖二磷酸羧化酶小链 Ribulose bisphosphate carboxylase small chain
30 Gohir.A11G1633 核酮糖二磷酸羧化酶小链 Ribulose bisphosphate carboxylase small chain
31 Gohir.A03G0224 核酮糖二磷酸羧化酶小链1A Ribulose bisphosphate carboxylase small chain 1A
32 Gohir.D03G1463 核酮糖二磷酸羧化酶小链1A Ribulose bisphosphate carboxylase small chain 1A
33 Gohir.D07G1809 核酮糖二磷酸羧化酶小链X1转录本
Ribulose bisphosphate carboxylase small chain, transcript variant X1
34 Gohir.A11G1632 核酮糖-1,5-二磷酸羧化酶/加氧酶小亚基(rbcS2b)
Ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (rbcS2b)
35 Gohir.D07G1759 核酮糖二磷酸羧化酶小链 Ribulose-bisphosphate carboxylase small chain
36 Gohir.D13G1755 Sec非依赖型蛋白移位酶TATA Sec-independent protein translocase protein TATA
37 Gohir.D01G1645 SKP1蛋白1A SKP1-like protein 1A
38 Gohir.A06G0566, Gohir.D06G0550 糖转运蛋白14 STP14 Sugar transport protein 14 STP14
39 Gohir.D13G0715 编码未知功能蛋白 Uncharacterized
40 Gohir.D12G1716 编码未知功能蛋白 Uncharacterized
41 Gohir.A13G0543 编码未知功能蛋白 Uncharacterized
42 Gohir.A03G0386, Gohir.D03G1298 广谱应激蛋白A Universal stress protein A-like protein

Table 3

Annotation of candidate genes involved in cotton plant growth and development screened by VIGS-cDNA library"

基因名
Gene name
基因ID
Gene ID
基因注释
Gene annotation
GhRBCSC1 Gohir.D07G1759 核酮糖二磷酸羧化酶小链 Ribulose-bisphosphate carboxylase small chain
GhANT17 Gohir.D08G1902 白细胞花青素双加氧酶ANT17 Leucoanthocyanidin dioxygenase ANT17
GhSTP14 Gohir.A06G0566, Gohir.D06G0550 糖转运蛋白14 STP14 Sugar transport protein 14 STP14
GhUSPA Gohir.A03G0386, Gohir.D03G1298 广谱应激蛋白A Universal stress protein A-like protein
GhFES1 Gohir.A11G0557 Hsp70核苷酸交换因子fes1 Hsp70 nucleotide exchange factor fes1
GhS15-4 Gohir.D09G2158, Gohir.A09G213678 40S核糖体蛋白S15-4 40S ribosomal protein S15-4
GhRBL8 Gohir.A02G1627, Gohir.D03G0176 60S核糖体蛋白L8 60S ribosomal protein L8
GhOIDO Gohir.A13G2343 氧戊二酸/铁依赖性加氧酶 Oxoglutarate/iron-dependent oxygenase

Fig. 1

Effect of silencing of candidate genes related to plant growth on cotton seedling growth A: growth phenotype of GhRBCSC1 silenced plant; B: growth phenotype of GhANT17 silenced plant; C: growth phenotype of GhSTP14 silenced plant; D: growth phenotype of GhUSPA silenced plant; E: growth phenotype of GhFES1 silenced plant; F: growth phenotype of GhS15-4 silenced plant; G: growth phenotype of GhRBL8 silenced plant; H: albino phenotype of GhCLA1 silenced plant."

Fig. 2

Effect of silencing of candidate genes related to plant growth on cotton seedling biomass A: VIGS candidate genes affected the fresh weight of plant aboveground; B: VIGS candidate genes affected the fresh weight of root. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 3

Silence efficiency of candidate genes related to plant growth by VIGS"

Fig. 4

Effect of silencing of GhOIDO genes on cotton seedling growth A: growth phenotype of VIGS-GhOIDO plant; B: VIGS-silence GhOIDO affected the fresh weight of plant aboveground; C: VIGS-silenceGhOIDO affected the fresh weight of root; D: the silence efficiency of GhOIDO genes."

Table 4

Gene annotation of salt response related genes screened by VIGS cDNA library"

基因名
Gene name
基因ID
Gene ID
基因注释
Gene annotation
GhATCYP1 Gohir.D01G1561, Gohir.A01G1642 陆地棉肽基脯氨酰顺反异构酶G. hirsutum peptidyl-prolyl cis-trans isomerase
GhSAC52 Gohir.D05G2788, Gohir.A05G2771 陆地棉60S核糖体蛋白L10 G. hirsutum 60S ribosomal protein L10
GhPSBW Gohir.D08G2068, Gohir.A11G1277 陆地棉光系统II反应中心W蛋白G. hirsutum photosystem II reaction center W protein
GhRBCSC2 Gohir.D11G1696, Gohir.A11G1632 核酮糖二磷酸羧化酶小链 Ribulose bisphosphate carboxylase small chain

Fig. 5

Phenotype of salt stress response in VIGS cotton plants A: phenotype of salt stress response in VIGS-GhATCYP1 cotton plants; B: phenotype of salt stress response in VIGS-GhSAC52 cotton plants; C: phenotype of salt stress response in VIGS-GhPSBW cotton plants; D: phenotype of salt stress response in VIGS-GhRBCSC2 cotton plants."

Fig. 6

Effect of silencing of candidate genes related to salt stress response on cotton plant biomass A: the fresh weight of plant aboveground by VIGS; B: the fresh weight of plant root by VIGS. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 7

Silence efficiency of salt stress related genes by VIGS"

[1] 孙巨龙, 刘帅, 胡启星, 白志刚, 崔爱花. 不同种植密度对棉花空间成铃分布的影响. 棉花科学, 2021, 43(1): 31-36.
Sun J L, Liu S, Hu Q S, Bai Z G, Cui A H. The influence of different planting density on the spatial distribution of cotton boll. Cotton Sci, 2021, 43(1): 31-36 (in Chinese with English abstract).
[2] 宋丽, 刘喜平, 仲杰, 李成奇. 棉花耐盐机理与盐害防御研究进展. 江苏农业科学, 2020, 48(16): 48-51.
Song L, Liu X P, Zhong J, Li C Q. Research progress on salt tolerance mechanism and salt damage prevention of cotton. Jiangsu Agric Sci, 2020, 48(16): 48-51. (in Chinese)
[3] Gao X, Wheeler T, Li Z, Kenerley C M, Shan L. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to verticillium wilt. Plant J, 2011, 66: 293-305.
doi: 10.1111/j.1365-313X.2011.04491.x
[4] Baulcombe D. RNA silencing in plants. Nature, 2004, 431: 356-363.
doi: 10.1038/nature02874
[5] Llave C. Virus-derived small interfering RNAs at the core of plant-virus interactions. Trends Plant Sci, 2010, 15: 701-707.
doi: 10.1016/j.tplants.2010.09.001 pmid: 20926332
[6] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto Y Y, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008, 320: 1185-1190.
doi: 10.1126/science.1159151 pmid: 18483398
[7] 宋震, 李中安, 周常勇. 病毒诱导的基因沉默(VIGS)研究进展. 园艺学报, 2014, 41: 1885-1894.
Song Z, Li Z A, Zhou C Y. Research advances of virus-induced gene silencing (VIGS). Acta Hortic Sin, 2014, 41: 1885-1894. (in Chinese with English abstract)
[8] Becker A, Lange M. VIGS—genomics goes functional. Trends Plant Sci, 2010, 15: 1-4.
doi: 10.1016/j.tplants.2009.09.002
[9] 吴磊, 姜朋, 张瑜, 马鸿翔, 张旭. 苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证. 江苏农业学报, 2017, 33: 248-252.
Wu L, Jiang P, Zhang Y, Ma H X, Zhang X. Construction and validation of virus-induced gene silencing (VIGS) systemin spike of wheat variety Sumai 3. Jiangsu J Agric Sci, 2017, 33: 248-252. (in Chinese with English abstract)
[10] 李聪聪, 安晓晖, 张中起, 刘康, 孙敬. 玉米TRV-VIGS的优化与顶腐病抗病基因的鉴定. 核农学报, 2019, 33: 2111-2118.
doi: 10.11869/j.issn.100-8551.2019.11.2111
Li C C, An X H, Zhang Z Q, Liu K, Sun J. Optimization of TRV-VIGS system and identification of top rot resistance genes in maize. Acta Agric Nucl Sin, 2019, 33: 2111-2118. (in Chinese with English abstract)
[11] 李亚军, 田振东, 柳俊, 谢从华. 利用病毒诱导的基因沉默(VIGS)技术快速鉴定两个马铃薯晚疫病抗性相关Est片段El732276El732318的功能. 农业生物技术学报, 2012, 20: 16-22.
Li Y J, Tian Z D, Liu J, Xie C H. Function of two potato ESTs EL732276 and EL732318 related to late blight resistance using virus-induced gene silencing (VIGS). J Agric Biotechnol, 2012, 20: 16-22. (in Chinese with English abstract)
[12] 刘天波, 蔡海林, 滕凯, 曾维爱, 毛辉, 魏润洁, 周志成, 周向平, 戴良英, 唐前君. 病毒诱导的基因沉默防控烟草马铃薯Y病毒病研究. 中国烟草学报, 2020, 26(5): 82-89.
Liu T B, Cai H L, Teng K, Zeng W A, Mao H, Wei R J, Zhou X P, Dai L L, Tang Q J. Control of tobacco potato Y by virus-induced gene silencing. Acta Tab Sin, 2020, 26(5): 82-89. (in Chinese with English abstract)
[13] 杨波, 刘海霞, 牛铁泉, 张鹏飞, 梁长梅, 赵旗峰, 温鹏飞. TRV介导的葡萄叶片VvANR基因瞬时表达分析. 核农学报, 2021, 35: 826-836.
doi: 10.11869/j.issn.100-8551.2021.04.0826
Yang B, Liu H X, Niu T Q, Zhang P F, Liang C M, Zhao Q F, Wen P F. Transient expression of VvANR gene in grape leaves mediated by TRV. Acta Agric Nucl Sin, 2021, 35: 826-836. (in Chinese with English abstract)
[14] 张蕊, 李博, 李旭, 尚文静, 韩迎春, 程琨, 刘娜, 郑文明. TaSPX3基因VIGS沉默表达降低小麦对叶锈病(Puccinia recondite f. sp. tritici)的抗性. 中国农业大学学报, 2021, 26(1): 26-32.
Zhang R, Li B, Li X, Shang W J, Han Y C, Cheng K, Liu N, Zheng W M. Silencing the expression of TaSPX3 by VIGS decreased the resistance of leaf rust. J China Agric Univ, 2021, 26(1): 26-32. (in Chinese with English abstract)
[15] 左琦. 利用病毒诱导的基因沉默技术探讨番茄PG与乙烯关系. 天津大学硕士学位论文, 天津, 2010.
Zuo Q. Relationship between PG and Ethylene of Tomato by Virus-induced Gene Silence Technology. MS Thesis of Tianjin University, Tianjin, China, 2010 (in Chinese with English abstract).
[16] Yang D D, An J, Li F J, Agrinya E A, Tian X L, Li Z H. The GhREV transcription factor regulate the development of shoot apical meristem in cotton (Gossypium hirsutum). J Cotton Sci, 2020, 3: 46-53.
[17] Ramegowda V, Senthil-Kumar M, Udayakumar M, Mysore K S. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC Plant Biol, 2013, 13: 193.
doi: 10.1186/1471-2229-13-193 pmid: 24289810
[18] 孙威, 许奕, 许桂莺, 孙佩光, 宋顺, 常胜合. 病毒诱导的基因沉默及其在植物研究中的应用. 生物技术通报, 2015, 31(10): 105-110.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.018
Sun W, Xu Y, Xu G Y, Sun P G, Song S, Chang S H. Virus-induced gene silencing and its application in plant research. Biotechnol Bull, 2015, 31(10): 105-110. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.018
[19] 王秋莹, 王伟巧, 张艳, 王国宁, 吴立强, 张桂寅, 马峙英, 杨君, 王省芬. 棉花CRVW的克隆与抗黄萎病功能分析. 中国农业科学, 2019, 52: 1858-1869.
Wang Q Y, Wang Wi Q, Zhang Y, Wang G N, Wu L Q, Zhang G Y, Ma Z Y, Yang J, Wang X F. Cloning and functional characterization of gene CRVW involved in cotton resistance to Verticillium wilt. Sci Agric Sin, 2019, 52: 1858-1869. (in Chinese with English abstract)
[20] 王慧飞, 刘琳琳, 甄军波, 刘迪, 欧阳艳飞, 迟吉娜, 冯雪, 张一名, 孙艳香, 陈光. 病毒诱导的精氨琥珀酸合成酶基因沉默对棉花氮代谢的影响. 东北林业大学学报, 2020, 48(5): 72-78.
Wang H F, Liu L L, Zhen J B, Liu D, Ou-yang Y F, Chi J N, Feng X, Zhang Y M, Sun Y X, Chen G. Effects of virus-induced gene silencing (VIGS) of argininosuccinate synthase gene on cotton nitrogen metabolism. J Northeast For Univ, 2020, 48(5): 72-78. (in Chinese with English abstract)
[21] Moreno J I, Raquel M, Castresana C. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J, 2005, 41: 451-463.
doi: 10.1111/j.1365-313X.2004.02311.x
[22] 穆春, 周琳, 李茂营, 杜明伟, 张明才, 田晓莉, 李召虎. 水培条件下病毒诱导棉花基因沉默体系的建立及优化. 作物学报, 2016, 42: 844-849.
doi: 10.3724/SP.J.1006.2016.00844
Mu C, Zhou L, Li M Y, Du M W, Zhang M C, Tian X L, Li Z H. Establishment and optimisation of virus-induced gene silencing in system hydroponic cotton. Acta Agron Sin, 2016, 42: 844-849. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00844
[23] Li M Y, Li F J, He P. Construction of a cotton VIGS library for functional genomics study. Methods Mol Biol, 2015, 1287: 267-279.
doi: 10.1007/978-1-4939-2453-0_20 pmid: 25740372
[24] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[25] 刘东让, 侯喜林, 肖栋. 普通白菜1,5-二磷酸核酮糖羧化/加氧酶小亚基基因BcrbcS的克隆及表达分析. 中国蔬菜, 2019, (1): 20-25.
Liu D R, Hou X L, Xiao D. Cloning and expression analysis of small subunit gene BcrbcS of ribulose 1,5-diphosphate carboxylation/oxygenase in Chinese cabbage. China Veget, 2019, (1): 20-25. (in Chinese)
[26] Hedden P, Thomas S G. Gibberellin biosynthesis and its regulation. Biochem Eng J, 2012, 444: 11-25.
[27] 胡有贞, 王雅欣. 2-氧化戊二酸依赖的双加氧酶基因F6’H1促进拟南芥叶片衰老. 植物生理学报, 2015, 51: 1873-1879.
Hu Y Z, Wang Y X. 2-oxoglutarate dependent dioxygenase gene F6’H1 of Arabidopsis thaliana promote leaf senescence. Acta Phytophysiol Sin, 2015, 51: 1873-1879. (in Chinese with English abstract)
[28] 袁进成, 刘颖慧. 植物糖转运蛋白研究进展. 中国农学通报, 2013, 29(36): 287-294.
Yuan J C, Liu Y H. Genetics and functional properties of sugar transporters in plants. Chin Agric Sci Bull, 2013, 29(36): 287-294. (in Chinese with English abstract)
[29] Jun J H, Xiao X, Rao X, Dixon R A. Proanthocyanidin subunit composition determined by functionally diverged dioxygenases. Nat Plants, 2018, 4: 1034-1043.
doi: 10.1038/s41477-018-0292-9 pmid: 30478357
[30] 张宇斌, 潘蓉蓉, 彭贵, 陈婷, 申欢, 云利锋, 孙威. 日本蛇根草无色花青素双加氧酶基因的克隆及其序列分析. 基因组学与应用生物学, 2018, 37: 2477-2482.
Zhang Y B, Pan R R, Peng G, Chen T, Shen H, Yun L F, Sun W. Cloning and sequence analysis of LDOX gene in Ophiorrhiza japonica. Genom Appl Biol, 2018, 37: 2477-2482. (in Chinese with English abstract)
[31] Brown D E, Rashotte A M, Murphy A S, Normanly J, Tague B W, Peer W A, Taiz L, Muday G K. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol, 2001, 126: 524-535.
pmid: 11402184
[32] Qian D, Xiong S, Li M, Tian L, Le Q Q. OsFes1C, a potential nucleotide exchange factor for OsBiP1, is involved in the ER and salt stress responses. Plant Physiol, 2021, 187: 396-408.
doi: 10.1093/plphys/kiab263 pmid: 34618140
[33] 张景霞. 拟南芥AtFes1A与植物耐热性. 山东师范大学博士学位论文, 山东济南, 2011.
Zhang J X. The involvement of Arabidopsis AtFest1A in Thermotolerance. PhD Dissertation of Shandong Normal University, Jinan, Shandong, China, 2011. (in Chinese with English abstract)
[34] 王淑智, 李利, 张道勇, 潘响亮. NaCl与Cd对小球藻光系统II (PSII)活性的影响. 应用与环境生物学报, 2011, 17: 839-846.
Wang S Z, Li L, Zhang D Y, Pan X L. Effects of NaCl and Cd on photosystem II (PSII) activity of Chlorella pyrenoidosa. Chin J Appl Environ Biol, 2011, 17: 839-846. (in Chinese with English abstract)
[35] Sánchez de Jiménez E, Medrano L, Martínez E B. Rubisco activase, a possible new number of the molecular chaperon family. Biochemistry, 1995, 34: 2826-2831.
pmid: 7893695
[36] Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S. Mechanisms of plant salt response: insights from proteomics. J Proteome Res, 2012, 11: 49-67.
doi: 10.1021/pr200861w pmid: 22017755
[37] Jurczyk B, Pociecha E, Grzesiak M, Kalita K, Rapacz M. Enhanced expression of rubisco activase splicing variants differ-entially affects rubisco activity during low temperature treatment in Lolium perenne. J Plant Physiol, 2016, 198: 49-55.
doi: 10.1016/j.jplph.2016.03.021
[38] 陈候鸣, 陈跃, 王盾, 蒋德安. 核酮糖-1,5-二磷酸羧化酶/加氧酶活化酶在植物抗逆性中的作用. 植物生理学报, 2016, 52: 1637-1648.
Chen H M, Chen Y, Wang D, Jiang D A. The role of ribulose-1,5-diphosphate carboxylase/oxygenase in resistance of plant to abiotic stresses. Acta Phytophysiol Sin, 2016, 52: 1637-1648. (in Chinese with English abstract)
[39] Law R D, Crafts-Brandner S J. High temperature stress increases the expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein. Arch Biochem Biophys, 2001, 386: 261-267.
pmid: 11368350
[40] 柯学, 李军营, 徐超华, 龚明. 不同光质对烟草叶片组织结构及Rubisco羧化酶活性和rbc、rca基因表达的影响. 植物生理学报, 2012, 48: 251-259.
Ke X, Li J Y, Xu C H, Gong M. Effects of different light quality on anatomical structure, carboxylase activity of ribulose 1,5-biphosphate carboxylase/oxygenase and expression of rbc and rca genes in tobacco (Nicotiana tabacum L.) leaves. Acta Phytophysiol Sin, 2012, 48: 251-259. (in Chinese with English abstract)
[41] 熊大斌, 曹玲珑, 李冬兵, 邓利, 尹钧, 牛洪斌. 脯氨酸对盐胁迫条件下大麦叶片Rubisco酶活性的影响. 河南农业大学学报, 2015, 49: 443-449.
Xiong D B, Cao L L, Li D B, Deng L, Yin J, Niu H B. Effect of proline on Rubisco activity in barley leaves during salinity stress. J Henan Agric Univ, 2015, 49: 443-449. (in Chinese with English abstract)
[1] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[2] LI Ming-Jiang, LEI Jian-Feng, ZULIPIYE·Tuoheniyazi , DAI Pei-Hong, LIU Chao, LIU Xiao-Dong. Cloning and functional verification of GhIQM1 gene of cotton in response to Verticillium wilt [J]. Acta Agronomica Sinica, 2022, 48(9): 2265-2273.
[3] GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114.
[4] ZHU Ling-Xiao, SONG Shi-Jia, LI Hao-Ran, SUN Hong-Chun, ZHANG Yong-Jiang, BAI Zhi-Ying, ZHANG Ke, LI An-Chang, LIU Lian-Tao, LI Cun-Dong. Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton [J]. Acta Agronomica Sinica, 2022, 48(7): 1800-1812.
[5] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[6] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[7] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[10] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[11] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[12] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[13] LI Han-Jia, LI Yuan, LIU Zhen-Yu, ZHANG Chen-Xia, XU Ze, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN Yuan, CHEN De-Hua. Effects of increased nitrogen fertilizer on square Bt protein expression and nitrogen metabolism in cotton [J]. Acta Agronomica Sinica, 2022, 48(10): 2567-2574.
[14] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[15] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[4] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[5] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[6] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[7] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[8] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[9] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[10] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .