Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 2978-2986.doi: 10.3724/SP.J.1006.2022.14226

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping and candidate gene prediction of soybean 100-seed weight based on high-density bin map

GE Tian-Li(), TIAN Yu, ZHANG Hao, LIU Zhang-Xiong, LI Ying-Hui(), QIU Li-Juan()   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Soybean Biology in Beijing, Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-12-02 Accepted:2022-02-25 Online:2022-12-12 Published:2022-03-12
  • Contact: LI Ying-Hui,QIU Li-Juan E-mail:2030587001@qq.com;liyinghui@caas.cn;qiulijuan@caas.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Key Research and Development Program of China for Crop Breeding “Evaluation, Innovation, and Excellent Gene Excavation for Elite Soybean Cultivars between China and Europe”(2019YFE0105900)

Abstract:

The 100-seed weight is a critical factor for soybean yield. Identifying QTLs/genes related to 100-seed weight paves a way for breeding a new type of high-yielding and large-seed cultivar through modern molecular design. In this study, combined with the high-density Bin map and the phenotype of 100-seed weight, two environmentally stable QTLs were detected on chromosomes 12 and 18 in six environments in a RILs population derived from cross of Zhonghuang 13 × Zhongpin 03-5373 (ZH13 × ZP03-5373), respectively. Among them, qSW12-2, could explain 7.31% to 11.03% the observed phenotypic variation and 0.52 to 0.91 g of the additive effect, and its positive allele was derived from ZH13. The physical interval of qSW12-2 was 0.19 Mb that harbored 20 annotated genes. Among them, Glyma.12G195500 carried a large-effect site involved in the biosynthesis of brassinosteroids. According to the gene expression pattern, Glyma.12G195500 preferentially expressed in the developing seeds, suggesting that Glyma.12G195500 was the candidate gene for qSW12-2. Three haplotypes were observed in Glyma.12G195500 in 385 soybean germplasm resources using re-sequencing data. Among them, there was significantly higher in 100-seed weight of ZH13-type H2 haplotype than H1, which was selected during soybean domestication. These results provide genetic loci for revealing the genetic mechanism controlling soybean seed weight and breeding high-yielding cultivars.

Key words: soybean, 100-seed weight, Bin map, candidate genes, haplotype analysis

Table 1

Phenotypic performance of ZH13/ZP03-5373 RIL population and parents for 100-seed weight"

环境
Environment
亲本 Parents 群体 Population
中黄13
Zhonghuang 13
中品03-5373
Zhongpin 03-5373
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
偏斜度
Skewness
峰度
Kurtosis
CP09 23.8±1.8 18.9±1.2 15.0 26.2 20.37 2.14 0.19 -0.10
SYa09 26.5±1.2 20.2±1.4 13.5 32.0 22.22 3.29 0.26 0.12
CP10 28.9±1.9 22.0±1.5 16.3 31.4 23.24 2.69 0.27 -0.14
SYa10 27.2±1.0 19.3±0.5 15.0 32.1 22.79 3.31 0.41 -0.12
SYi10 30.3±1.7 20.7±1.0 14.9 34.2 23.79 3.00 0.23 0.38
CP11 27.7±1.4 20.4±1.4 15.8 31.6 22.66 2.50 0.31 0.37
BLUP 27.4±2.2 20.3±1.1 16.3 27.7 22.30 1.97 0.23 -0.05

Fig. 1

Distribution of 100-seed weight for Zhonghuang 13/Zhongpin 03-5373 RIL population and parent"

Table 2

QTLs for 100-seed weight mapped in the Zhonghuang 13/Zhongpin 03-5373 RIL population in multiple environments"

位点
QTL
标记区间
Marker internal
物理位置
Physical position
阈值LOD 表型贡献率
PVE (%)
加性效应
Add
环境
Environment
已报道的区间
Reported QTLs
qSW2 mk258-mk259 7850001-8317538 4.24 5.70 0.71a SYi10 Liu et al. 2013[12]
4.25 4.35 0.40a BLUP
qSW5 mk1027-mk1028 41520254-41629890 5.09 7.62 0.83a SYa10 Specht et al. 2001[23]
4.15 4.25 0.40a BLUP
qSW11 mk2301-mk2302 28333312-28950000 3.07 4.19 0.61a SYi10 Li et al. 2008[24]
4.94 5.11 0.43a BLUP
qSW12-1 mk2516-mk2519 34887226-35322974 5.99 4.64 0.56b CP09 Liu et al. 2013[12]
4.74 6.21 0.86b SYa09
qSW12-2 mk2522-mk2523 35526715-35712060 6.44 11.03 0.85b CP10 Liu et al. 2013[12]
6.59 9.19 0.91b SYi10
6.87 7.31 0.52b BLUP
qSW18 Gm18-551.5-Gm18-552.5 55141446-55293847 3.08 5.10 0.58b CP10 Liu et al. 2013[12]
4.56 6.26 0.75b SYi10
8.00 8.64 0.56b BLUP
qSW19 mk4377-mk4378 42546296-44734953 6.26 8.56 0.89b SYi10 Stombaugh et al. 2004[17]
7.76 8.27 0.56b BLUP

Table S1

Large-effect SNP and InDel mutation sites of candidate genes between parents in qSW12-2"

基因
Gene
位置
Position
变异类型
Variation type
参考碱基
REF
变异碱基
ALT
中品03-5373
Zhongpin 03-5373
中黄13
Zhonghuang 13
Glyma.12G193900 35561419 Nonsynonymous SNP C T TT CC
Glyma.12G194100 35578344 Nonsynonymous SNP A G GG AA
Glyma.12G194100 35578375 Nonsynonymous SNP G A AA GG
Glyma.12G194100 35583338 Nonsynonymous SNP T G GG TT
Glyma.12G194100 35583347 Nonsynonymous SNP G A AA GG
Glyma.12G194200 35593338 Nonsynonymous SNP G A AA GG
Glyma.12G194200 35593393 Nonsynonymous SNP T C CC TT
Glyma.12G194200 35595213 Nonsynonymous SNP A T TT AA
Glyma.12G194200 35595382 Nonsynonymous SNP G A AA GG
Glyma.12G194300 35603012 Nonsynonymous SNP A C CC AA
Glyma.12G194400 35608860 Nonsynonymous SNP T A AA TT
Glyma.12G194600 35644029 Nonsynonymous SNP C T TT CC
Glyma.12G195100 35667870 Nonsynonymous SNP T G GG TT
Glyma.12G195200 35671604 Nonsynonymous SNP C T TT CC
Glyma.12G195300 35677690 Nonsynonymous SNP A G GG AA
Glyma.12G195300 35677929 Nonsynonymous SNP G A AA GG
Glyma.12G195300 35677965 Nonsynonymous SNP T C CC TT
Glyma.12G195300 35678251 Nonsynonymous SNP C A AA CC
Glyma.12G195300 35677627 Stopgain SNP C G GG CC
Glyma.12G195400 35681037 Nonsynonymous SNP T C CC TT
Glyma.12G195400 35681173 Nonsynonymous SNP C T TT CC
Glyma.12G195400 35681196 Nonsynonymous SNP A C CC AA
Glyma.12G195400 35681366 Nonsynonymous SNP C G GG CC
Glyma.12G195400 35681492 Nonsynonymous SNP T A AA TT
Glyma.12G195500 35691745 Nonsynonymous SNP T C TT CC
Glyma.12G195500 35692321 Nonsynonymous SNP A G GG AA

Fig. 2

Relative expression profiling of candidate genes for 100-seed weight trait during seed development period in soybean Genes in red font: the candidate gene for 100-seed weight of soybean. Data are obtained from the USDA-ARS SoyBase and Legume Clade Database group at the Iowa State University, Ames, IA, USA."

Table 3

Large-effect SNP and InDel mutation sites of Glyma.12G195500 between parents"

基因
Gene
位置
Position
变异类型
Variation type
中黄13
Zhonghuang 13
中品03-5373
Zhongpin 03-5373
Glyma.12G195500 Gm12_35691745** Nonsynonymous SNP C T
Glyma.12G195500 Gm12_35692321** Nonsynonymous SNP A G

Fig. 3

Differences of 100-seed weight of different genotype materials in Glyma.12G195500 in RIL population"

Fig. 4

Haplotype analysis of Glyma.12G195500 in 385 soybean accessions A: the genome structure and haplotypes of the Glyma.12G195500 gene; the linear gene structure in the top panel displays the UTRs (black rectangles), CDS region (teal rectangles), and introns (horizontal solid black lines). The SNPs highlighted in red are the functional ones in 385 soybean samples; B: the structures of proteins encoded by three haplotypes. The amino acid abbreviations before and after slashes represent the reference and the alternative amino acids, respectively; C: frequency of haplotypes in G. soja, landrace and improved cultivar; D: significant analysis of the difference in 100-seed weight between haplotypes; the letter above the bar graph represents the P-value."

[1] Ma Y J, Kan G Z, Zhang X N, Wang Y L, Zhang W, Du H Y, Yu D Y. Quantitative Trait Loci (QTL) mapping for glycinin and β-conglycinin contents in soybean (Glycine max L. Merr.). J Agric Food Chem, 2016, 64: 3473-3483.
doi: 10.1021/acs.jafc.6b00167
[2] Edwards C J, Hartwig E E. Effect of seed size upon rate of germination in soybeans. Agron J, 1971, 63: 429-450.
doi: 10.2134/agronj1971.00021962006300030024x
[3] Mian M A, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011-1016.
doi: 10.1007/BF00230118 pmid: 24162474
[4] Zhou Z K, Jiang Y, Wang Z, Gou Z H, Jun L, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408-414.
doi: 10.1038/nbt.3096 pmid: 25643055
[5] Raghuprakash K R, Joseph J, George L G, Brian M W. Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L). Merr.]. Mol Breed, 2014, 34: 431-445.
doi: 10.1007/s11032-014-0045-z
[6] Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant, 2017, 10: 670-684.
doi: 10.1016/j.molp.2017.03.006
[7] Jiang W B, Huang H Y, Hu Y W, Zhu S W, Wang Z Y, Lin W H. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol, 2013, 162: 1965-1977.
doi: 10.1104/pp.113.217703
[8] Wang S D, Liu S L, Wang J, Kengo Y, Zhou B, Yu Y C, Liu Z, Wolf B F, Ma J F, Chen L Q, Guan Y F, Shou H X, Tian Z X. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110
[9] Nguyen C X, Paddock K J, Zhang Z Y, Stacey M G. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol, 2020, 229: 920-934.
doi: 10.1111/nph.16928
[10] Lu X, Li Q T, Xiong Q, Li W, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang W K, Ma B, Chen S Y, Zhang J S. The transcriptomic signature of developing soybean seeds reveals genetic basis of seed trait adaptation during domestication. Plant J, 2016, 86: 530-544.
doi: 10.1111/tpj.13181
[11] Zhao B T, Dai A H, Wei H C, Yang S X, Wang B S, Jiang N, Feng X Z. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Mol Biol, 2016, 90: 33-47.
doi: 10.1007/s11103-015-0392-0
[12] Liu Y L, Li Y H, Jochen C R, Michael F M, Liu Z X, Liu B, Zhang S S, Yan L, Chang R Z, Qiu L J. Identification of quantitative trait loci underlying plant height and seed weight in soybean. Plant Genome, 2013, 6: 1-11.
[13] Wang B B, Zhu Y B, Zhu J J, Liu Z P, Liu H, Dong X M, Guo J J, Li W, Chen J, Gao C, Zheng X M, Lai J S, Zhao H M, Song W B. Identification and fine-mapping of a major maize leaf width QTL in a re-sequenced large recombinant inbred lines population. Front Plant Sci, 2018, 9: 101-112.
doi: 10.3389/fpls.2018.00101 pmid: 29487604
[14] Xu X Y, Zeng L, Tao Y, Tri V, Wan J R, Roger B, Jim Noe, Zenglu Li, Steve F, Safiullah M P, Grover S, Henry T N. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA, 2013, 110: 13469-13474.
doi: 10.1073/pnas.1222368110
[15] Qi X P, Li M W, Xie M, Liu X, Ni M, Shao G H, Song C, Aldrin K Y Y, Tao Y, Wong F L, Sachiko I, Wong C F, Wong K S, Xu C Y, Li C Q, Wang Y, Guan R, Sun F M, Fan G Y, Xiao Z X, Zhou F, Phang T H, Liu X, Tong S W, Chan T F, Yiu S M, Tabata S, Wang J, Xu X, Lam H M. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun, 2014, 5: 4340.
doi: 10.1038/ncomms5340 pmid: 25004933
[16] Tian Y, Yang L, Lu H F, Zhang B, Li Y F, Liu C, Ge T L, Liu Y L, Han J N, Li Y H, Qiu L J. QTL analysis for plant height and fine mapping of two environmentally stable QTL with major effects in soybean. J Integr Agric, 2021, 21: 933-946.
doi: 10.1016/S2095-3119(21)63693-6
[17] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[18] Bates D, Mchler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw, 2014, 1406: 133-199.
[19] Li C, Li Y H, Li Y F, Lu H F, Hong H L, Tian Y, Li H Y, Zhao T, Zhou X W, Liu J, Zhou X N, Scott A J, Liu B, Qiu L J. A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Mol Plant, 2020, 13: 745-759.
doi: 10.1016/j.molp.2020.01.014
[20] Yu H H, Xie W B, Wang J, Xing Y Z, Xu C G, Li X H, Xiao J H, Zhang Q F. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2018, 6: e17595.
[21] Yao D, Liu Z Z, Zhang J, Liu S Y, Qu J, Guan S Y, Pan L D, Wang D, Liu J W, Wang P W. Analysis of quantitative trait loci for main plant traits in soybean. Genet Mol Res, 2015, 14: 6101-6109.
doi: 10.4238/2015.June.8.8 pmid: 26125811
[22] 董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018, 44: 938-946.
Dong J C, Yang J, Guo T, Chen L K, Chen Z Q, Wang H. QTL Mapping for heading date in rice using high-density Bin map. Acta Agron Sin, 2018, 44: 938-946. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00938
[23] Specht J E, Chase K, Macrander M, Graef G E, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493-509.
doi: 10.2135/cropsci2001.412493x
[24] Li W X, Zheng D H, Kyujung V, Suk H L. QTL mapping for major agronomic traits across two years in soybean (Glycine max L. Merr.). J Crop Sci Biotechnol, 2008, 11: 171-190.
[25] Safiullah M P, Tri V, Kerry C, Jeong D L, Grover S, Craig A R, Mark R E, Joseph W B, Perry B C, David L H, Henry T N, David A S. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci, 2013, 53: 765-774.
doi: 10.2135/cropsci2012.03.0153
[26] Orf J H, Chase K, Jarvik K, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x
[27] Stombaugh S K, Orf J H, Jung H G, Chase K, Lark K G, Somers D A. Quantitative trait loci associated with cell wall polysaccharides in soybean seed. Crop Sci, 2004, 44: 2101-2106.
doi: 10.2135/cropsci2004.2101
[28] Han Y P, Li D M, Zhu D, Li H Y, Li X P, Teng W L, Li W B. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet, 2012, 125: 671-683.
doi: 10.1007/s00122-012-1859-x pmid: 22481120
[29] Mehrzad E, Elroy R C, Istvan R. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor Appl Genet, 2013, 126: 1677-1687.
doi: 10.1007/s00122-013-2083-z pmid: 23536049
[30] Wu Y Z, Fu Y C, Zhao S S, Gu P, Zhu Z F, Sun C Q, Tan L B. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol J, 2016, 14: 377-386.
doi: 10.1111/pbi.12391
[31] Zhou Y, Tao Y J, Zhu J Y, Miao J, Liu J, Liu Y H, Yi C D, Yang Z F, Gong Z Y, Liang G H. GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Rice, 2017, 10: 34-45.
doi: 10.1186/s12284-017-0171-4
[1] WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118.
[2] LIANG Zheng, KE Mei-Yu, CHEN Zhi-Wei, CHEN Xu, GAO Zhen. Function of GmPIN2 family gene in regulating root development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 24-35.
[3] BAI Zhi-Yuan, CHEN Xiang-Yang, ZHENG A-Xiang, ZHANG Li, ZOU Jun, ZHANG Da-Tong, CHEN Fu, YIN Xiao-Gang. Spatial-temporal variations for agronomic and quality characters of soybeans varieties (strains) tested in America from 1991 to 2019 [J]. Acta Agronomica Sinica, 2023, 49(1): 177-187.
[4] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[5] QI Yang-Yang, DOU Ru-Na, ZHAO Cai-Tong, ZHANG Zhi, LI Wen-Bin, JIANG Zhen-Feng. Analysis of key genes involved in GA pathway responding to temperature and exogenous GA related to internode development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 62-72.
[6] ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195.
[7] LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893.
[8] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
[9] KE Dan-Xia, HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue. Functional analysis of GmTGA26 gene under salt stress in soybean [J]. Acta Agronomica Sinica, 2022, 48(7): 1697-1708.
[10] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[11] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[12] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[13] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[14] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[15] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[3] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[4] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[5] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[6] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[7] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[8] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[9] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[10] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .