Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 821-832.doi: 10.3724/SP.J.1006.2023.21016

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis

GAO Chun-Hua1,2(), FENG Bo1,*(), LI Guo-Fang3, LI Zong-Xin2, LI Sheng-Dong1, CAO Fang1, CI Wen-Liang4, ZHAO Hai-Jun2   

  1. 1Crop Research Institute, Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize / Key Laboratory of Wheat Biology and Genetics and Breeding in Northern Huang-Huai River Plain, Ministry of Agriculture and Rural Affairs / Shandong Technology Innovation Center of Wheat, Jinan 250100, Shandong, China
    2Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    3Zibo Digital Agriculture and Rural Development Center, Zibo 255000, Shandong, China
    4Shandong Academy of Agricultural Machinery Sciences, Jinan 250100, Shandong, China
  • Received:2022-02-22 Accepted:2022-07-21 Online:2023-03-12 Published:2022-08-17
  • Contact: FENG Bo E-mail:chunhuaaa009@163.com;fengbo109@126.com.
  • Supported by:
    Shandong Agricultural Science and Technology Fund (Industrial Upgrading Project in the Park) Program(2019YQ001);Shandong Provincial Major Science and Technology Innovation Program(2020CXGC108052);National Key Research and Development Program of China(2018YFD0300600-1);Shandong Provincial Key Research and Development Program(2021LZGC009-4);Natural Science Foundation of Shandong Province(ZR2019PEE047);China Agriculture Research System of MOF and MARA(CARS-03-22)

Abstract:

The objective of this study is to investigate the response mechanism of nitrogen fertilizer to starch synthesis in wheat grains under high temperature stress after anthesis and to clarify the physiological mechanism and reasonable operation measures of nitrogen fertilizer to alleviate the damage of high temperature stress. The experiment was carried out in Jinan and Jiyang experimental station of Shandong Province on different nitrogen application rates (N1: 180 kg hm-2, N2: 240 kg hm-2, and N3: 300 kg hm-2), with heat resistant wheat variety JM44 and heat sensitive variety XM26 from 2018 to 2020, using an artificial greenhouse to warm up the air temperature for 7 days after anthesis as high temperature stress (H) and the field as control (CK). Grain filling rates, grain weight, sucrose, starch synthesis and related enzyme activities were analyzed. The results showed that the grain filling period was shortened, the maximum grain filling rate, amylopectin content, total starch contents, and the ratio of amylopectin to amylase were significantly reduced compared with the control caused by high temperature stress after anthesis. Compared with 180 kg hm-2 and 300 kg hm-2 treatments, the sucrose accumulation in flag leaves were found highest in 240 kg hm-2 treatment under high temperature stress. The contents of amylase, amylopectin, total starch, grain weight, the highest activity of sucrose synthase decomposition direction (SS-I), soluble starch synthase (SSS), and starch branching enzyme (SBE) in grains were also the highest in 240 kg hm-2 treatment under high temperature stress. The results also showed that under high temperature stress with nitrogen application rate of 240 kg hm-2 the activity of sucrose synthase synthetic direction (SS-II), and the activity of sucrose synthase decomposition direction (SS-I), the soluble starch synthase (SSS), and the starch branching enzyme (SBE) of grains in JM44 were higher than those in XM26, resulting in more sucrose content in flag leaves, higher grain weight, and more starch content of grains in JM44. The study showed that to reduce the inhibition on starch synthesis, the nitrogen application rate of 240 kg hm-2 could maintain higher level of sucrose synthesis in flag leaves and sucrose decomposition capacity in grains after high temperature stress. These results indicate that the suitable nitrogen application and selection resistance cultivars were a coping measure to increase the starch content and alleviating the harmful effects of high temperature stress after anthesis in winter wheat.

Key words: winter wheat, nitrogen application rate, high temperature after anthesis, sucrose, starch, enzyme activity

Table 1

Test treatment design level"

温度
Temperature treatment
品种
Cultivar name
施氮量
Nitrogen application rate (kg hm-2)
对照CK 济麦44 Jimai 44 180 (N1) 240 (N2) 300 (N3)
新麦26 Xinmai 26 180 (N1) 240 (N2) 300 (N3)
高温胁迫High temperature stress 济麦44 Jimai 44 180 (N1) 240 (N2) 300 (N3)
新麦26 Xinmai 26 180 (N1) 240 (N2) 300 (N3)

Fig. 1

Average wheat canopy temperature of the control and treatments during seven days of high temperature treatments JN: Jinan; JY: Jiyang; CK: control; H: high temperature stress."

Fig. 2

Effects of nitrogen fertilizer on grain weight under high temperature stresses CK: the control; H: high temperature stress; N1: nitrogen application rates of 180 kg hm-2; N2: nitrogen application rates of 240 kg hm-2; N3: nitrogen application rates of 300 kg hm-2."

Table 2

Effects of nitrogen fertilizer on grain filling characteristic parameters under high temperature stress"

温度处理
Temperature treatments
施氮量
Nitrogen
application rate
2018-2019 2019-2020
Tmax
(d)
Vmax
(mg grain-1 d-1)
T1
(d)
R2 Tmax
(d)
Vmax
(mg grain-1 d-1)
T1
(d)
R2
新麦26 XM26
CK N1 17.88 1.61 39.17 0.995 16.98 1.54 40.47 0.997
N2 18.18 1.63 40.94 0.996 17.20 1.63 41.67 0.997
N3 17.55 1.63 42.46 0.997 18.00 1.76 43.21 0.995
H N1 13.90 0.95 34.53 0.999 13.29 0.86 35.68 0.998
N2 16.25 1.21 36.90 0.999 15.88 1.23 38.66 0.989
N3 13.87 0.99 36.31 0.997 14.92 1.01 37.68 0.998
济麦44 JM44
CK N1 16.45 1.77 41.79 0.994 16.67 1.79 41.18 0.991
N2 17.38 1.90 43.14 0.993 16.86 1.88 41.83 0.990
N3 16.04 1.89 44.64 0.992 17.00 1.82 44.30 0.994
H N1 14.33 1.00 38.97 0.992 12.61 0.94 38.37 0.993
N2 16.41 1.47 40.51 0.998 16.53 1.40 39.74 0.997
N3 14.67 1.01 39.72 0.995 15.71 1.04 39.35 0.991

Fig. 3

Effects of nitrogen fertilizer on sucrose content in flag leaves under high temperature stress Different lowercase letters above the columns indicate significant difference among the control and high temperature stress treatments under the condition of the same nitrogen application rate and cultivar at P < 0.05. Different uppercase letters above the columns indicate significant difference among the cultivars and nitrogen application rate under the same temperature conditions at P < 0.05. The error bar is standard deviation. Treatments are the same as those given in Fig. 2."

Fig. 4

Effects of nitrogen fertilizer on sucrose synthase activity (SS) in flag leaves under high temperature stress SS-I: sucrose synthetase-I activity points to synthetic; SS-II: sucrose synthetase-II activity points to decomposition. Different lowercase letters above the columns indicate significant difference among the control and high temperature stress treatments under the condition of the same nitrogen application rate and cultivar at P < 0.05. Different uppercase letters above the columns indicate significant difference among the cultivars and nitrogen application rate under the same temperature conditions at P < 0.05. The error bar is standard deviation. Treatments are the same as those given in Fig. 2."

Fig. 5

Effects of nitrogen fertilizer on sucrose synthase (SS) activity in grains under high temperature stress SS-I: sucrose synthetase-I activity points to synthetic; SS-II: sucrose synthetase-II activity points to decomposition. Different lowercase letters above columns indicate significant difference among the control and high temperature stress treatments under the condition of the same nitrogen application rate and cultivar at P < 0.05. Different uppercase letters above the columns indicate significant difference among the cultivars and nitrogen application rate under the same temperature conditions at P < 0.05. The error bar is standard deviation. Treatments are the same as those given in Fig. 2."

Table 3

Effects of nitrogen fertilizer on starch content in grains under high temperature stress"

温度处理
Temperature treatments
施氮量
Nitrogen application rate
直链淀粉含量
Amylose content
(%)
支链淀粉含量
Amylopectin content
(%)
总淀粉含量
Starch content
(%)
支/直比
Ratio of amylose to amylopectin
新麦26 XM26
CK N1 9.09±0.13 c 42.53±0.23 b 51.62±0.10 b 4.69±0.05 b
N2 13.78±0.11 b 47.54±1.82 a 61.32±1.70 a 3.52±0.04 d
N3 7.43±0.18 d 40.83±0.59 b 48.27±0.77 c 5.54±0.17 a
H N1 7.23±0.02 de 30.34±0.33 d 37.57±0.35 d 4.18±0.03 c
N2 16.76±0.016 a 34.50±0.25 c 51.25±0.24 b 2.07±0.01 e
N3 6.96±0.017 e 32.78±0.13 cd 39.74±0.15 d 4.72±0.02 b
济麦44 JM44
CK N1 9.41±0.04 c 47.49±0.02 b 56.90±0.06 b 5.05±0.24 b
N2 12.46±0.31 d 56.74±0.07 a 69.20±0.24 a 4.56±0.11 c
N3 7.71±0.26 d 47.00±0.31 b 54.71±0.05 b 6.12±0.18 a
H N1 7.31±0.16 d 37.71±1.12 d 45.02±0.96 c 5.08±0.04 b
N2 14.66±0.09 a 42.26±2.55 c 56.92±2.45 b 2.80±0.07 d
N3 5.96±0.25 e 30.01±0.39 e 35.96±0.63 d 5.08±0.24 b

Fig. 6

Effects of nitrogen fertilizer on SSS and GBSS activity in grains under high temperature stress SSS: soluble starch synthase; GBSS: granule-bound starch synthase. Different lowercase letters above the columns indicate significant difference among the control and high temperature stress treatments under the condition of the same nitrogen application rate and cultivar at P < 0.05. Different uppercase letters above the columns indicate significant difference among the cultivars and nitrogen application rate under the same temperature conditions at P < 0.05. The error bar is standard deviation. Treatments are the same as those given in Fig. 2."

Fig. 7

Effects of nitrogen fertilizer on starch branching enzymes in grains under high temperature stress SBE: starch branching enzymes. Different lowercase letters above the columns indicate significant difference among the control and high temperature stress treatments under the condition of the same nitrogen application rate and cultivar at P < 0.05. Different uppercase letters above the columns indicate significant difference among the cultivars and nitrogen application rate under the same temperature conditions at P < 0.05. The error bar is standard deviation. Treatments are the same as those given in Fig. 2."

[1] 刘萍, 郭文善, 浦汉春, 封超年, 朱新开, 彭永欣. 灌浆期短暂高温对小麦淀粉形成的影响. 作物学报, 2006, 32: 182-188.
Liu P, Guo W S, Pu H C, Feng C N, Zhu X K, Peng Y X. Effects of transient high temperature during grain filling period on starch formation in wheat (Triticum aestivum L.). Acta Agron Sin, 2006, 32: 182-188. (in Chinese with English abstract)
[2] 谭彩霞, 封超年, 郭文善, 朱新开, 李春燕, 彭永欣. 花后不同时期高温处理下小麦籽粒的淀粉合成及相关酶基因表达. 核农学报, 2012, 26: 1311-1316.
doi: 10.11869/hnxb.2012.09.1311
Tan C X, Feng C N, Guo W S, Zhu X K, Li C Y, Peng Y X. Effect of high temperature during different growth stage after anthesis on starch synthesis and related enzyme gene expression in winter grains. J Nucl Agric Sci, 2012, 26: 1311-1316. (in Chinese with English abstract)
[3] 闫素辉, 尹燕枰, 李文阳, 梁太波, 李勇, 邬云海, 王平, 耿庆辉, 戴忠民, 王振林. 灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响. 作物学报, 2008, 34: 1092-1096.
doi: 10.3724/SP.J.1006.2008.01092
Yan S H, Yin Y P, Li W Y, Liang T B, Li Y, Wu Y H, Wang P, Geng Q H, Dai Z M, Wang Z L. Effect of high temperature during grain filling on starch accumulation, starch granule distribution, and activities of related enzymes in wheat grains. Acta Agron Sin, 2008, 34: 1092-1096 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.01092
[4] 王晨阳, 郭天财, 阎耀礼, 朱云集, 夏国军, 王化岑, 周继泽. 花后短期高温胁迫对小麦叶片光合性能的影响. 作物学报, 2004, 30: 88-91.
Wang C Y, Guo T C, Yan Y L, Zhu Y J, Xia G J, Wang H C, Zhou J Z. Effects of short post-anthesis high temperature stress on leaf photosynthetic potential in winter wheat (Triticum aestivum L.). Acta Agron Sin, 2004, 30: 88-91 (in Chinese with English abstract).
doi: 10.3724/SP.J.1095.2013.20024
[5] Jener C F. Starch synthesis in the kernel of wheat under high-temperature conditions. Aust J Plant Physiol, 1994, 21: 791-806.
[6] 胡阳阳, 卢红芳, 刘卫星, 康娟, 马耕, 李莎莎, 褚莹莹, 王晨阳. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响. 作物学报, 2018, 44: 591-600.
Hu Y Y, Lu H F, Liu W X, Kang J, Ma G, Li S S, Chu Y Y, Wang C Y. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat. Acta Agron Sin, 2018, 44: 591-600. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00591
[7] 赵辉, 戴廷波, 荆奇, 姜东, 曹卫星, 陆玮, 田孝威. 灌浆期高温对两种品质类型小麦品种籽粒淀粉合成关键酶活性的影响. 作物学报, 2006, 32: 423-429.
Zhao H, Dai T B, Jing Q, Jiang D, Cao W X, Lu W, Tian X W. Effects of high temperature during grain filling on key enzymes involved in starch synthesis in two wheat cultivars with different quality types. Acta Agron Sin, 2006, 32: 423-429. (in Chinese with English abstract)
[8] 代晓华, 康建宏, 邬雪婷. 花后不同时期高温对春小麦淀粉含量和产量的影响研究. 农业科学研究, 2013, 32(4): 5-12.
Dai X H, Kang J H, Wu X T. Impacts of the high temperature after the flowering period on the starch content and yield of the spring wheat. J Agric Sci, 2013, 32(4): 5-12. (in Chinese with English abstract)
[9] 敬海霞, 王晨阳, 郭天财, 张双利, 胡吉帮, 王永华. 花后高温胁迫对不同筋型小麦籽粒品质的影响. 河南农业科学, 2010, (6): 5-8.
Jing H X, Wang C Y, Guo T C, Zhang S L, Hu J B, Wang Y H. Effects of post-anthesis high temperature stress on grain quality of three wheat cultivars with different gluten strength. J Henan Agric Sci, 2010, (6): 5-8. (in Chinese with English abstract)
[10] 封超年, 郭文善, 施劲松, 彭永欣, 朱新开. 小麦花后高温对籽粒胚乳细胞发育及粒重的影响. 作物学报, 2000, 26: 399-405.
Feng C N, Guo W S, Shi J S, Peng Y X, Zhu X K. Effect of high temperature after anthesis on endosperm cell development and grain weight in wheat. Acta Agron Sin, 2000, 26: 399-405. (in Chinese with English abstract)
[11] 杨晓娟, 居辉, 王治世, 郭安廷, 杨佑明. 花后高温和干旱对冬小麦光合、抗氧化特性及粒重的影响. 麦类作物学报, 2015, 35: 958-963.
Yang X J, Ju H, Wang Z S, Guo A T, Yang Y M. Effect of high temperature and drought after anthesis on photosynthesis, antioxidant properties and grain weight in winter wheat. J Triticeae Crops, 2015, 35: 958-963. (in Chinese with English abstract)
[12] 戴廷波, 赵辉, 荆奇, 姜东, 曹卫星. 灌浆期高温和水分逆境对冬小麦籽粒蛋白质和淀粉含量的影响. 生态学报, 2006, 26: 3670-3676.
Dai T B, Zhao H, Jing Q, Jiang D, Cao W X. Effects of high temperature and water stress during grain filling on grain protein and starch formation in winter wheat. Acta Ecol Sin, 2006, 26: 3670-3676. (in Chinese with English abstract)
[13] Zhao H, Dai T, Jiang D, Cao W. Effects of high temperature on key enzymes involved in starch and protein formation in grains of two wheat cultivars. J Agron Crop Sci, 2008, 194: 47-54.
doi: 10.1111/j.1439-037X.2007.00283.x
[14] 姚仪敏, 王小燕, 陈建珍, 闫浩亮, 穆麒麟, 刘盼春, 田小海. 灌浆期增温对小麦籽粒结实及品质的双向效应及与施氮量的关系. 麦类作物学报, 2015, 35: 860-866.
Yao M Y, Wang X Y, Chen J Z, Yan H L, Mu Q L, Liu P C, Tian X H. Pros and cons effect of warming on wheat grain yield and quality during grain filling. J Triticeae Crops, 2015, 35: 860-866. (in Chinese with English abstract)
[15] 江文文, 尹燕枰, 王振林, 李勇, 杨卫兵, 彭佃亮, 杨东清, 崔正勇, 卢昆丽, 李艳霞. 花后高温胁迫下氮肥追施后移对小麦产量及旗叶生理特性的影响. 作物学报, 2014, 40: 942-949.
Jiang W W, Yin Y P, Wang Z L, Li Y, Yang W B, Peng D L, Yang D Q, Cui Z Y, Lu K L, Li Y X. Effects of postponed application of nitrogen fertilizer on yield and physiological characteristics of flag leaf in wheat under post-anthesis heat stress. Acta Agron Sin, 2014, 40: 942-949. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00942
[16] 吴翠平, 贺明荣, 张宾, 张洪华, 刘永环. 施氮量基追比与灌浆中期高温胁迫对小麦产量和品质的影响. 西北植物学报, 2007, 27: 734-739.
Wu C P, He M R, Zhang B, Zhang H H, Liu Y H. Effects of Nitrogen Dressing Ratios and Heat stress during the middle period of grain filling on wheat grain yield and quality. Acta Bot Boreali- Occident Sin, 2007, 27: 734-739 (in Chinese with English abstract).
[17] 刘永环, 贺明荣, 王晓英, 张洪华. 不同施氮量基追比例对高温胁迫下小麦籽粒产量和品质的影响. 生态学报, 2009, 29: 5930-5935.
Liu Y H, He M R, Wang X Y, Zhang H H. The effects of top -dressing to basal nitrogen ratios on grain yield and quality of winter wheat under heat stresses during grain filling. Acta Ecol Sin, 2009, 29: 5930-5935. (in Chinese with English abstract)
[18] 慕宇, 朱荣, 孙立影, 康建宏. 施氮量基追比对花后高温胁迫下春小麦淀粉形成的影响. 干旱地区农业研究, 2017, 35(5): 208-215.
Mu Y, Zhu R, Sun L Y, Kang J H. Effect of nitrogen dressing ratios and high temperature on the formation of starch after anthesis of spring wheat. Agric Res Arid Areas, 2017, 35(5): 208-215. (in Chinese with English abstract)
[19] 孙建波, 徐灿, 朱荣, 吴宏亮, 康建宏. 施氮时期对花后高温胁迫下春小麦淀粉形成的影响. 西南农业学报, 2018, 31: 1163-1170.
Sun J B, Xu C, Zhu R, Wu H L, Kang J H. Effects of nitrogen time on starch formation of spring wheat at high temperature after anthesis. Southwest China J Agric Sci, 2018, 31: 1163-1170. (in Chinese with English abstract)
[20] 姜丽娜, 李冬芬, 李春喜, 邵云. 小麦蔗糖合成酶和腺苷二磷酸葡萄糖焦磷酸化酶的研究进展. 作物杂志, 2008, (6): 11-15.
Jiang L N, Li D F, Li C X, Shao Y. Recent advances on wheat sucrose synthase and ADP-glucose pyrophosphorylase. Crops, 2008, (6): 11-15. (in Chinese with English abstract)
[21] 陈洋, 赵宏伟. 氮素用量对春玉米穗位叶蔗糖合成关键酶活性的影响. 玉米科学, 2008, 16(1): 115-118.
Chen Y, Zhao H W. Effect of nitrogen application on activities of key enzymes of sucrose synthesis in the leaf located near the ear of spring maize. J Maize Sci, 2008, 16(1): 115-118. (in Chinese with English abstract)
[22] 赵宏伟, 邹德堂, 马凤鸣. 施氮量对不同品种春玉米穗位叶蔗糖合成的影响. 中国农学通报, 2005, 21(10): 196-199.
Zhao H W, Zou D T, Ma F M. Effect of different nitrogen utilization on sucrose synthesizing in spike leaf of different spring maize. Chin Agric Sci Bull, 2005, 21(10): 196-199. (in Chinese with English abstract)
[23] 杨毅, 李昱, 康建宏, 刘萍. 花后高温胁迫对春小麦籽粒淀粉合成的影响. 麦类作物学报, 2015, 35: 1535-1541.
Yang Y, Li Y, Kang J H, Liu P. Effect of heat stress after anthesis on starch synthesis in spring wheat. J Triticeae Crops, 2015, 35: 1535-1541 (in Chinese with English abstract)
[24] 卢红芳, 石向军, 胡阳阳, 王晨阳, 王家瑞, 刘卫星, 马耕, 康娟. 灌浆期高温与干旱对小麦籽粒淀粉合成相关酶基因表达的影响. 麦类作物学报, 2020, 40: 517-525.
Lu H F, Shi X J, Hu Y Y, Wang C Y, Wang J R, Liu W X, Ma G, Kang J. Response of enzymes involved in starch biosynthesis to high temperature and drought stress during the grain filling stage. J Triticeae Crops, 2020, 40: 517-525. (in Chinese with English abstract)
[25] 孙立影, 苏玮, 吴宏亮, 李昱, 王雪, 康建宏. 花后不同时期高温对春小麦淀粉形成的影响. 农业科学研究, 2015, 36(1): 54-60.
Sun L Y, Su W, Wu H L, Li Y, Wang X, Kang J H. Effects of high temperature at different stages after anthesis on starch formation in spring wheat. J Agric Sci, 2015, 36(1): 54-60. (in Chinese)
[26] 李世清, 邵明安, 李紫燕, 伍维模, 张兴昌. 小麦籽粒灌浆特征及影响因素的研究进展. 西北植物学报, 2003, 23: 2031-2039.
Li S Q, Shao M A, Li Z Y, Wu W M, Zhang X C. Review of characteristics of wheat grain fill and factors to influence it. Acta Bot Boreali-Occident Sin, 2003, 23: 2031-2039. (in Chinese with English abstract)
[27] 何照范. 粮油籽粒品质及其分析技术. 北京: 中国农业出版社, 1985. pp 144, 293.
He Z F. Analysis Technique for Grain Quality in Cereals and Oils. Beijing: Agriculture Press, 1985. pp 144, 294. (in Chinese)
[28] Sebková V, Unger C, Hardegger M, Sturm A. Biochemical, physiological, and molecular characterization of sucrose synthase from daucuscarota. Plant Physiol, 1995, 108: 75-83.
pmid: 7784526
[29] Ruty T W, Kerr P S, Huber S C. Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis. Plant Physiol, 1983, 73: 428-433.
doi: 10.1104/pp.73.2.428 pmid: 16663233
[30] Nakamura Y, Yuki K, Park S Y, Ohya T. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 56: 833-839.
[31] 李太贵, 沈波, 陈能, 罗玉坤. Q酶在水稻籽粒至白形成中作用的研究. 作物学报, 1997, 23: 338-344.
Li T G, Shen B, Chen N, Luo Y K. Effect of Q-enzyme on the chalkiness formation of rice grain. Acta Agron Sin, 1997, 23: 338-344. (in Chinese with English abstract)
[32] 高春华, 冯波, 曹芳, 李升东, 王宗帅, 张宾, 王峥, 孔令安, 王法宏. 施氮量对花后高温胁迫后小麦同化物积累、转运及产量的影响. 中国农业科学, 2020, 53: 4365-4375.
Gao C H, Feng B, Cao F, Li S D, Wang Z S, Zhang B, Wang Z, Kong L A, Wang F H. Effects of nitrogen application rate on assimilate accumulation, transportation and grain yield in wheat under high temperature stress after anthesis. Sci Agric Sin, 2020, 53: 4365-4375. (in Chinese with English abstract)
[33] Santiveri F, Royo C, Romagosa I. Patterns of grain filling of spring and winter hexaploid triticales. Eur J Agron, 2002, 16: 219-230.
doi: 10.1016/S1161-0301(01)00127-7
[34] Gibson L R, Paulsen G M. Yield components of what grown under high temperature stress during reproductive growth. Crop Sci, 1999, 39: 1841-1846.
doi: 10.2135/cropsci1999.3961841x
[35] Viswanathan C, Khanna C R. Effect of heat stress on grain growth, starch synthesis and protein synthesis in grains of wheat (Triticum aestivum L.) varieties differing in grains weight stability. J Agron Crop Sci, 2001, 186: 1-7.
doi: 10.1046/j.1439-037x.2001.00432.x
[36] Stone P J, Nicolas M E. Effect of timing of heat stress during grain filling on two wheat varieties differing in heat tolerance: I. Grain growth. Aust J Plant Physiol, 1995, 22: 927-934.
[37] Dias A S, Lidon F C. Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. J Agron Crop Sci, 2009, 195: 137-147.
doi: 10.1111/j.1439-037X.2008.00347.x
[38] Yin N X, Guo W S, Spiertz H J. A quantitative approach to characterizes sink-source relationships during grain filling in contrasting wheat genotypes. Field Crops Res, 2009, 114: 119-126.
doi: 10.1016/j.fcr.2009.07.013
[39] 刘霞, 尹燕枰, 贺明荣, 王振林. 播期对小麦品种藁城8901籽粒淀粉合成相关酶活性及淀粉组分积累的影响. 作物学报, 2006, 36: 1065-1070.
Liu X, Yin Y P, He M R, Wang Z L. Effects of sowing date on activities of enzymes involved in grain starch synthesis and starch component accumulation in wheat cultivar Gaocheng 8901. Acta Agron Sin, 2006, 36: 1065-1070. (in Chinese with English abstract)
[40] 石慧清, 龚月桦, 张东武. 花后高温对持绿型小麦叶片衰老及籽粒淀粉合成相关酶的影响. 植物生态学报, 2011, 35: 769-778.
doi: 10.3724/SP.J.1258.2011.00769
Shi H Q, Gong Y H, Zhang D W. Effect of high temperature on leaf senescence and related enzymes of grain starch synthesis in stay-green wheat after anthesis. Chin J Plant Ecol, 2011, 35: 769-778. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2011.00769
[41] 陆伟婷. 冬小麦产量和品质对花前夜间增温及不同施氮量的响应. 南京农业大学硕士学位论文, 江苏南京, 2017.
Lu W T. Response Characteristics on Different Nitrogen Rates under Night Warming of Grain Yield and Quality of Winter Wheat. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2017. (in Chinese with English abstract)
[42] 赵晶晶, 姚珊, 李昱, 康建宏, 吴宏亮, 许强. 花后干旱对春小麦籽粒淀粉含量及淀粉形成关键酶活性的影响. 干旱地区农业研究, 2015, 33(3): 104-110.
Zhao J J, Yao S, Li Y, Kang J H, Wu H L, Xu Q. Effects of drought on the starch contents and activities of key enzymes after anthesis in spring wheat grains. Agric Res Arid Areas, 2015, 33(3): 104-110. (in Chinese with English abstract)
[43] 谭彩霞, 封超年, 陈静, 郭静, 郭文善, 朱新开, 李春燕, 彭永欣. 作物淀粉合成关键酶及其基因表达的研究进展. 麦类作物学报, 2008, 28: 912-919.
Tan C X, Feng C N, Chen J, Guo J, Guo W S, Zhu X H, Li C Y, Peng Y X. Progress on key enzymes involved in crop starch synthesis and their gene expression. J Triticeae Crops, 2008, 28: 912-919. (in Chinese with English abstract)
[44] 吴宏亮, 康建宏, 姚珊, 李昱, 倪欢. 花后高温干旱对春小麦淀粉形成的影响. 新疆农业科学, 2013, 50: 1974-1984.
Wu H L, Kang J H, Yao S, Li Y, Ni H. Effect of high temperature and drought on the formation of starch after flowering of spring wheat. Xinjiang Agric Sci, 2013, 50: 1974-1984. (in Chinese with English abstract)
[45] Rachana D, Himanshu P, Shivdhar S, Bidisha C, Amod K T, Ram K F. Impact of sowing dates on terminal heat tolerance of different wheat (Triticum aestivum L.) cultivars. Natl Acad Sci Lett, 2019, 42: 445-449.
doi: 10.1007/s40009-019-0786-7
[46] Sofield I, Evans L T, Cook M G, Wardlaw I F. Factors influencing the rate and duration of grain filling in wheat. Aust J Plant Physiol, 1977, 4: 785-797.
[1] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[2] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[3] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[4] WANG Xue, GU Shu-Bo, LIN Xiang, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(3): 784-794.
[5] MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582.
[6] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[7] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[8] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[9] WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152.
[10] WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139.
[11] JIANG Yan, ZHAO Can, CHEN Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[12] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[13] WANG Quan, WANG Le-Le, ZHU Tie-Zhong, REN Hao-Jie, WANG Hui, CHEN Ting-Ting, JIN Ping, WU LI-Quan, YANG Ru, YOU Cui-Cui, KE Jian, HE Hai-Bing. Effects of HgCl2 on photosynthetic characteristics and its physiological mechanism of rice leaves in vitro feeding [J]. Acta Agronomica Sinica, 2022, 48(9): 2377-2389.
[14] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[15] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .