Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1551-1561.doi: 10.3724/SP.J.1006.2023.21032

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.)

ZHANG Jing1(), GAO Wen-Bo1, YAN Lin1, ZHANG Zong-Wen1,2, ZHOU Hai-Tao3, WU Bin1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Biodiversity International, Beijing 100081, China
    3Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
  • Received:2022-04-28 Accepted:2022-10-10 Online:2023-06-12 Published:2022-11-02
  • Contact: *E-mail: wubin03@caas.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-07-A-1);Key Research and Development Program of Hebei Province(21326305D);Agricultural Science and Technology Innovation Program (ASTIP) in CAAS, and the Crop Germplasm Resources Protection(2020NWB036-06)

Abstract:

Affected by climate change and human production activities, the world’s salt-alkali land is expanding, and soil salinization has become an important factor limiting the development of agricultural production. Oat is a crop with the strong saline-alkali tolerance. To evaluate the salinity tolerance of oat germplasm resources in China, 485 accessions were stress treated with 125 mmol L-1 NaCl, Na2SO4, and NaHCO3 (1:1:1 molar concentration) solution at germination stage. Eight growth indexes, including germination potential, germination rate, root length, bud length, root fresh weight, bud fresh weight, root dry weight, and bud dry weight, were identified at the germination stage of oats. A comprehensive evaluation and screening of oat germplasm resources for salt-alkali tolerance was performed by the correlation analysis, principal component analysis, membership function analysis, and cluster analysis. The results showed that salt-alkali inhibited all eight indexes identified, and a significant positive correlation was observed between the affiliation function values of the indexes under salt-alkali tolerance and with the comprehensive evaluation value. Eight evaluation indexes were converted into two comprehensive indexes by principal component analysis, with a cumulative variance contribution of 76.926%. The membership function analysis combined with cluster analysis screened a total of two oat accessions with high salt-alkaline tolerance (Oat 1606 and Heikowski 596) and classified 485 accessions into five classes, including two highly saline-alkaline tolerance, 49 salt-alkaline-tolerant accessions, 147 medium saline-alkaline tolerance accessions, 129 sensitive saline-alkaline accessions, and 158 high saline-alkaline sensitive accessions. The results of correlation analysis, principal component analysis, and stepwise multiple regression analysis, and the bud length was screened as the preferred indicator for the screening of salt-alkali tolerance in germinating oats, followed by root fresh weight, bud fresh weight, germination potential, and germination rate, which were also important indexes for the comprehensive evaluation and screening of salt-alkali tolerance in germinating oats.

Key words: Avena sativa L., germplasm resources, germination stage, salt-alkali tolerance, comprehensive evaluation

Fig. 1

Changes in germination indexes of eight oat germplasm resources under different saline-alkali concentrations A: the trend of germination potential of Naked oat; B: the trend of germination potential of hulled oat; C: the trend of germination rate of naked oat; D: the trend of germination rate of hulled oat. Different letters of the same variety indicate significant difference between treatments at P < 0.05."

Fig. 2

Effects of salt-alkali stress on germination traits of oat CK: control treatment; T: 125 mmol L-1saline-alkali stress treatment; GP: germination potential; GR: germination rate; RL: root length; BL: bud length; RFW: root fresh weight; BFW: bud fresh weight; RDW: root dry weight; BDW: bud dry weight; *** indicates significant correlation at the 0.001 probability level."

Table 1

Descriptive statistics of each trait in 485 oat resources under control and saline-alkali tolerance conditions"

指标
Indicator
对照处理Control treatment 盐碱胁迫处理Saline-alkali stress treatment
最大值
Max.
最小值
Min.
均值
Average
标准差
SD
变异系数
CV
最大值
Max.
最小值
Min.
均值
Average
标准差
SD
变异系数
CV
GP (%) 96.000 2.667 47.073 28.367 60.260 82.000 0.667 23.615 16.928 71.683
GR (%) 98.000 3.333 49.376 29.648 60.046 87.333 0.667 26.245 18.234 69.475
RFW (g) 0.075 0.014 0.045 0.011 25.561 0.039 0.002 0.011 0.005 46.416
BFW (g) 0.151 0.024 0.069 0.014 20.184 0.055 0.002 0.021 0.009 40.769
RDW (g) 0.014 0.002 0.004 0.001 25.507 0.006 0 0.002 0.001 35.188
BDW (g) 0.029 0.003 0.007 0.002 24.505 0.007 0 0.003 0.001 36.322
RL (cm) 15.167 4.733 10.912 1.870 17.133 3.713 0.233 1.217 0.631 51.827
BL (cm) 19.733 6.130 12.655 1.630 12.882 7.587 0.467 3.043 1.397 45.922

Table 2

Principal component variance contribution rate of germination indexes of oat"

主成分
Principal
component
初始特征值Initial eigenvalue 提取载荷平方和Extract square sum load
特征值
Eigenvalue
方差贡献率
Variance contribution rate (%)
累积方差贡献率Cumulative variance contribution rate (%) 特征值
Eigenvalue
方差贡献率
Variance contribution rate (%)
累积方差贡献率
Cumulative variance contribution rate (%)
1 4.629 57.867 57.867 4.629 57.867 57.867
2 1.525 19.060 76.926 1.525 19.060 76.926
3 0.735 9.186 86.112
4 0.614 7.669 93.781
5 0.249 3.115 96.897
6 0.123 1.538 98.435
7 0.108 1.352 99.787
8 0.017 0.213 100.000

Fig. 3

Correlation analysis of membership function values and D-values of various traits in oat Abbreviations are the same as those given in Fig. 2; D-value: comprehensive evaluation value; ** indicates significant correlation at the 0.01 probability level."

Table 3

Principal component load matrix"

主成分
Principal component
GP GR RFW BFW RDW BDW RL BL
1 0.634 0.632 0.847 0.851 0.669 0.777 0.730 0.897
2 0.745 0.747 -0.111 -0.370 -0.187 -0.423 0.116 -0.187

Fig. 4

Cluster analysis of salt-alkali tolerance of 485 oat germplasm resources I: the highly salt-alkaline-tolerant accessions; II: the salt-alkaline-tolerant accessions; III: the medium salt-alkaline-tolerant accessions; IV: the salt-alkaline-sensitive accessions; V: the high salt-alkaline-sensitive accessions."

Table 4

Influence of different salt and alkali concentration on oat germination index (%)"

盐碱浓度
Saline-alkali concentrations
411 (海阔夫斯596号Heikowski 596) 413 (燕1606 Oat 1606)
GP GR GP GR
CK 51.33 a 52.00 a 52.67 a 54.67 a
125 mmol L-1 34.00 b 39.33 ab 22.00 b 30.67 ab
150 mmol L-1 24.67 bc 30.67 b 20.67 c 27.33 b
175 mmol L-1 18.67 cd 24.67 b 8.00 cd 12.67 b
200 mmol L-1 6.67 d 8.00 c 3.33 d 6.00 c

Table 5

Description statistics of D-value of oat in different areas"

地理来源
Geographical origin
最小值
Min.
最大值
Max.
均值
Average
标准差
SD
变异系数
CV
中国华北地区 North China 0.041 0.484 0.139 c 0.059 0.424
中国东北地区 Northeast China 0.092 0.415 0.199 ab 0.076 0.382
中国西南地区 Southwest China 0.042 0.162 0.080 d 0.026 0.325
中国西北地区 Northwest China 0.051 0.578 0.173 bc 0.097 0.561
东欧地区 Eastern Europe 0.069 0.712 0.187 bc 0.129 0.690
西欧地区 Western Europe 0.061 0.565 0.229 ab 0.108 0.472
大洋洲地区 Oceanica 0.124 0.355 0.228 ab 0.071 0.311
东北亚地区 Northeast Asia 0.160 0.319 0.244 a 0.057 0.234
美洲地区 The Americas 0.069 0.858 0.183 bc 0.142 0.776
[1] Allbed A, Kumar L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. Adv Remot Sens, 2013, 2: 373-385.
[2] Wang S, Sun L, Ling N, Zhu C, Chi F Q, Li W Q, Hao X Y, Bian J Y, Chen L, Wei D. Exploring soil factors determining composition and structure of the bacterial communities in saline-alkali soils of Songnen Plain. Front Microbiol, 2020, 10, 2902-2902.
[3] Kovda Victor A. Loss of productive land due to salinization. J Human Environ, 1983: 91-93.
[4] 李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005, (2): 154-158.
Li B, Wang Z C, Sun Z G, Chen Y, Yang F. Resources and sustainable resource exploitation of salinized land in China. Agric Res Arid Areas, 2005, (2): 154-158 (in Chinese with Englis abstract).
[5] Amundson R, Berhe A A, Hopmans J W, Olson C, Sztein A E, Sparks D L. Soil and human security in the 21st century. Science, 2015, 348: 1261071.
[6] 王遵亲. 中国盐碱土. 北京: 科学出版社, 1993.
Wang Z Q. Saline-alkaline Soils of China. Beijing: Science Press, 1993. (in Chinese)
[7] Zhang W, Chong W, Rui X U E, Wang L J. Effects of salinity on the soil microbial community and soil fertility. J Integr Agric, 2019, 18: 1360 -1368.
doi: 10.1016/S2095-3119(18)62077-5
[8] Doran J C. Australian trees and shrubs: species for land rehabilitation and farm planting in the tropics. ACIAR Monograph, 1997, 24: 314-319.
[9] 马晨, 马履一, 刘太祥, 左海军, 张博, 刘寅. 盐碱地改良利用技术研究进展. 世界林业研究, 2010, 23(2): 28-32.
Ma C, Ma L Y, Liu T X, Zuo H J, Zhang B, Liu Y. Research progress on saline land improvement technology. World For Res, 2010, 23(2): 28-32. (in Chinese with English abstract)
[10] 丁海荣, 洪立洲, 杨智青, 王茂文, 朱小梅, 刘冲. 盐碱地及其生物措施改良研究现状. 现代农业科技, 2010, (6): 299-300.
Ding H R, Hong L Z, Yang Z Q, Wang M W, Zhu X M, Liu C. Research status of saline-alkali land and its biological measures improvement. Mod Agric Sci Technol, 2010, (6): 299-300. (in Chinese)
[11] 任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013.
Ren C Z, Hu Y G. Chinese Oatology. Beijing: China Agriculture Press, 2013. (in Chinese)
[12] Quamruzzaman M, Manik S M N, Livermore M, Johnson P, Zhou M, Shabala S. Multidimensional screening and evaluation of morpho-physiological indices for salinity stress tolerance in wheat. J Agron Crop Sci, 2022, 208: 454-471.
doi: 10.1111/jac.v208.4
[13] Kingsbury R W, Epstein E. Selection for salt-resistant spring wheat. Crop Sci, 1984, 24: 310-315.
doi: 10.2135/cropsci1984.0011183X002400020024x
[14] Giaveno C D, Ribeiro R V, Souza G M, de Oliveira R F. Screening of tropical maize for salt stress tolerance. Crop Breed Appl Biotechnol, 2007, 7: 304-313.
doi: 10.12702/1984-7033
[15] Rasel M, Tahjib-Ul-Arif M, Hossain M A, Hassan L, Farzana S, Brestic M. Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. J Plant Growth Regul, 2021, 40: 1853-1868.
doi: 10.1007/s00344-020-10235-9
[16] 韩毅强, 高亚梅, 杜艳丽, 张玉先, 杜吉到, 张文慧, 潘绍玉. 大豆耐盐碱种质资源鉴定. 中国油料作物学报, 2021, 43: 1016-1024.
Han Y Q, Gao Y M, Du Y L, Zhang Y X, Du J D, Zhang W H, Pan S Y. Identification of saline-alkali tolerant germplasm resources of soybean during the whole growth stage. Chin J Oil Crop Sci, 2021, 43: 1016-1024. (in Chinese with English abstract)
[17] 李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014, 47: 2927-2939.
doi: 10.3864/j.issn.0578-1752.2014.15.003
Li C H, Yao X D, Ju B T, Zhu M Y, Wang H Y, Zhang H J, Ao X, Yu C M, Xie F D, Song S H. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes. Sci Agric Sin, 2014, 47: 2927-2939. (in Chinese with English abstract)
[18] Bai J, Yan W, Wang Y, Yin Q, Liu J, Wight C, Ma B. Screening oat genotypes for tolerance to salinity and alkalinity. Front Plant Sci, 2018, 9: 1302.
doi: 10.3389/fpls.2018.01302 pmid: 30333838
[19] 陈新, 张宗文, 吴斌. 裸燕麦萌发期耐盐性综合评价与耐盐种质筛选. 中国农业科学, 2014, 47: 2038-2046.
doi: 10.3864/j.issn.0578-1752.2014.10.018
Chen X, Zhang Z W, Wu B. Comprehensive evaluation of salt tolerance and screening for salt tolerant accessions of naked oat (Avena nuda L.) at germination stage. Sci Agric Sin, 2014, 47: 2038-2046. (in Chinese with English abstract)
[20] 杨科, 张保军, 胡银岗, 王淑华, 薛晓峰. 混合盐碱胁迫对燕麦种子萌发及幼苗生理生化特性的影响. 干旱地区农业研究, 2009, 27(3): 188-192.
Yang K, Zhang B J, Hu Y G, Wang S H, Xue X F. Effects of complex saline-alkali stress on seeds germination and physiological and biochemical characteristics of oat seedlings. Agric Res Arid Areas, 2009, 27(3): 188-192. (in Chinese with English abstract)
[21] 付鸾鸿, 于崧, 于立河, 薛盈文, 郭伟. 不同基因型燕麦萌发期耐盐碱性分析及其鉴定指标的筛选. 作物杂志, 2018, (6): 27-35.
Fu L H, Yu S, Yu L H, Xue Y W, Guo W. Analysis of salt-alkali tolerance and screening of identification indexes of different Oat at germination stage. Crops, 2018, (6): 27-35. (in Chinese with English abstract)
[22] 郑殿生, 王晓鸣, 张京. 燕麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
Zheng D S, Wang X M, Zhang J. Description Specification and Data Standard for Oat Germplasm Resources. Beijing: China Agriculture Press, 2006. (in Chinese)
[23] 梁潇, 侯向阳, 王艳荣, 任卫波, 赵青山, 王照兰, 李怡, 武自念. 羊草种质资源耐盐碱性综合评价. 中国草地学报, 2019, 41(3): 1-9.
Liang X, Hou X Y, Wang Y R, Ren W B, Zhao Q S, Wang Z L, Li Y, Wu Z N. Comprehensive evaluation on saline-alkali tolerance of Leymus chinensis germplasm resources. Grass China, 2019, 41(3): 1-9. (in Chinese with English abstract)
[24] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价. 作物学报, 2020, 46: 1591-1604.
doi: 10.3724/SP.J.1006.2020.04064
Chen E Y, Wang R F, Qin L, Yang Y B, Li F F, Zhang H W, Wang H L, Liu B, Kong Q H, Guan Y A. Comprehensive identification and evaluation of saline-alkali tolerance of Foxtail millet at bud stage. Acta Agron Sin, 2020, 46: 1591-1604. (in Chinese with English abstract)
[25] 赵可夫. 植物抗盐生理. 北京: 中国科学技术出版社, 1993. pp 3-4.
Zhao K F. Plant Salt Resistance Physiology. Beijing: Science and Technology of China Press, 1993. pp 3-4. (in Chinese)
[26] 王佺珍, 刘倩, 高娅妮, 柳旭. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37: 5565-5577.
Wang Q Z, Liu Q, Gao Y N, Liu X. Review on the mechanism of the responses to saline-alkali stress in plants. Acta Ecol Sin, 2017, 37: 5565-5577. (in Chinese with English abstract)
[27] Hosseini M K, Powell A A, Bingham I J. Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci Res, 2002, 12: 165-172.
doi: 10.1079/SSR2002108
[28] 徐玲秀. 大豆种质资源不同生育时期耐碱性评价. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2018.
Xu L X. Evaluation of Alkali Tolerance of Soybean Germplasm Resources at Different Growth Stages. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2018. (in Chinese with English abstract)
[29] Zhu G Y, Kinet J M, Lutts S. Characterization of rice (Oryza sativa L.) F3 populations selected for salt resistance: I. Physiological behavior during vegetative growth. Euphytica, 2001, 121: 251-263.
doi: 10.1023/A:1012016431577
[30] Khan A A, Rao S A, McNeilly T. Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica, 2003, 131: 81-89.
doi: 10.1023/A:1023054706489
[31] Verma O P S, Yadava R B R. Salt tolerance of some oats (Avena sativa L.) varieties at germination and seedling stage. J Agron Crop Sci, 1986, 156: 123-127.
doi: 10.1111/j.1439-037X.1986.tb00016.x
[32] Huang R. Research progress on plant tolerance to soil salinity and alkalinity in sorghum. J Integr Agric, 2018, 17: 739-746.
doi: 10.1016/S2095-3119(17)61728-3
[33] 马晓军, 金峰学, 杨姗, 杨德光, 李晓辉. 作物耐盐碱数量性状基因座(QTL)定位. 分子植物育种, 2015, 13: 221-227.
Ma X J, Jin F X, Yang S, Yang D G, Li X H. Mapping QTLs for salt and alkaline tolerance in crops. Mol Plant Breed, 2015, 13: 221-227. (in Chinese with English abstract)
[34] Trachsel S, Messmer R, Stamp P, Ruta N, Hund A. QTLs for early vigor of tropical maize. Mol Breed, 2010, 25: 91-103.
doi: 10.1007/s11032-009-9310-y
[35] Tuyen D D, Zhang H M, Xu D H. Validation and high-resolution mapping of a major quantitative trait locus for alkaline salt tolerance in soybean using residual heterozygous line. Mol Breed, 2013, 31: 79-86.
doi: 10.1007/s11032-012-9771-2
[36] 斯日古楞, 张玉霞, 马群, 邓丽媛, 董航源. 8个饲用燕麦品种萌发期耐盐性综合评价. 草原与草坪, 2020, 40(6): 118-123.
Siriguleng, Zhang Y X, Ma Q, Deng L Y, Dong H Y. Comprehensive evaluation of salt tolerance of 8 forage oat varieties. Grassland Turf, 2020, 40(6): 118-123. (in Chinese with English abstract)
[37] Khosravi S, Azizinezhad R, Baghizadeh A, Maleki M. Evaluation and comparison of drought tolerance in some wild diploid populations, tetraploid and hexaploid cultivars of wheat using stress tolerance indices. Acta Agric Sloven, 2020, 115: 105-112.
[38] Zhang W, Zhao Z, Bai G, Fu F. Study and evaluation of drought resistance of different genotype maize inbred lines. Front Agric China, 2008, 2: 428-434.
doi: 10.1007/s11703-008-0071-x
[39] Li G, Zhang H Y, Ji L, Zhao E, Liu J, Li L, Zhang J. Comprehensive evaluation on drought-resistance of different soybean varieties. J Appl Ecol, 2006, 17: 2408-2412.
[40] 张婷婷, 于崧, 于立河, 李琳, 金珊珊, 郭建华, 张静. 松嫩平原春小麦耐盐碱性鉴定及品种(系)筛选. 麦类作物学报, 2016, 36: 1008-1019.
Zhang T T, Yu S, Yu L H, Li L, Jin S S, Guo J H, Zhang J. Saline-alkali tolerance identification and varieties (lines) screening of spring wheat in Songnen Plain. J Triticeae Crops, 2016, 36: 1008-1019. (in Chinese with English abstract)
[41] 段雅娟, 曹士亮, 于滔, 李文跃, 杨耿斌, 王成波, 刘宝民, 刘长华. 玉米自交系萌发期耐盐性鉴定. 作物杂志, 2022, (1): 213-219.
Duan Y J, Cao S L, Yu T, Li W Y, Yang G B, Liu B M, Liu C H. Identification of salt tolerance during germination of maize in-bred lines. Crops, 2022, (1): 213-219. (in Chinese with English abstract)
[42] 虞晓芬, 傅玳. 多指标综合评价方法综述. 统计与决策, 2004, (11): 119-121.
Yu X F, Fu D. Summary of multi-index comprehensive evaluation methods. Stat Dec, 2004, (11): 119-121. (in Chinese)
[1] SUN Xian-Jun, JIANG Qi-Yan, HU Zheng, LI Hong-Bo, PANG Bin-Shuang, ZHANG Feng-Ting, ZHANG Sheng-Quan, ZHANG Hui. Identification and evaluation of wheat germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 1132-1139.
[2] MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582.
[3] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[4] ZHU Ling-Xiao, SONG Shi-Jia, LI Hao-Ran, SUN Hong-Chun, ZHANG Yong-Jiang, BAI Zhi-Ying, ZHANG Ke, LI An-Chang, LIU Lian-Tao, LI Cun-Dong. Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton [J]. Acta Agronomica Sinica, 2022, 48(7): 1800-1812.
[5] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[6] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[7] ZHU Ya-Di, WANG Hui-Qin, WANG Hong-Zhang, REN Hao, LYU Jian-Hua, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, YIN Fu-Wei, LIU Peng. Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage [J]. Acta Agronomica Sinica, 2022, 48(12): 3130-3143.
[8] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[9] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[10] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[11] WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274.
[12] SUN Zhi-Guang, WANG Bao-Xiang, ZHOU Zhen-Ling, FANG Lei, CHI Ming, LI Jing-Fang, LIU Jin-Bo, Bello Babatunde Kazeem, XU Da-Yong. Screening of germplasm resources and QTL mapping for germinability under submerged condition in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 61-70.
[13] Li-Ge BAO,Ping LU,Meng-Sha SHI,Yue XU,Min-Xuan LIU. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages [J]. Acta Agronomica Sinica, 2020, 46(5): 734-744.
[14] ZHANG Xiao-Jun,XIAO Jin,WANG Hai-Yan,QIAO Lin-Yi,LI Xin,GUO Hui-juan,CHANG Li-Fang,ZHANG Shu-Wei,YAN Xiao-Tao,CHANG Zhi-Jian,WU Zong-Xin. Evaluation of resistance to Fusarium head blight in Thinopyrum-derived wheat lines [J]. Acta Agronomica Sinica, 2020, 46(01): 62-73.
[15] GAO Huan-Huan,YE Sang,WANG Qian,WANG Liu-Yan,WANG Rui-Li,CHEN Liu-Yi,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan,CUI Cui. Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus [J]. Acta Agronomica Sinica, 2019, 45(9): 1416-1430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .