Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1726-1732.doi: 10.3724/SP.J.1006.2023.21043

• RESEARCH NOTES • Previous Articles    

Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley

TIAN Min(), LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun*()   

  1. State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Research Center for Healthy Functional Crops such as Barley and Hulless Barley/College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2022-06-22 Accepted:2022-11-27 Online:2023-06-12 Published:2022-12-13
  • Contact: *E-mail: zyfeng49@126.com
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000705);Sichuan International Science and Technology Innovation Cooperation Project(2021YFH0113);China Agriculture Research System of MOF and MARA(Barley and Hulless Barley, CARS-05)

Abstract:

Fiber is one of the important indexes to evaluate the forage quality of barley, and the analysis of its genetic mechanism has important guiding significance for the selection and breeding of forage barley. In this study, 316 barley varieties were planted in Chengdu and Kangding for two consecutive years, and 75,289 SNPs distributed in barley genome were used for genome-wide association analysis of grain cellulose and hemicellulose content, 65 and 34 significant SNPs (P ≤ 0.05/N) were repeatedly detected for cellulose and hemicellulose traits using the mixed linear model of TASSEL software, respectively. The mean explained phenotypic variation rates of markers were 13.18% and 14.10%, respectively. There were four and one significant correlation loci repeatedly detected for cellulose and hemicellulose content in three or more environments, respectively. The same SNP loci were detected for two traits, indicating that there was genetic correlation between the two traits. Six candidate genes were found for cellulose traits, and one candidate gene was found for hemicellulose traits, which laid the foundation for genetic and molecular mechanism research and genetic improvement of barley fiber.

Key words: barley, genome-wide association analysis, cellulose, hemicellulose

Table S1

316 copies of the material name, type, and origin"

编号
Number
材料名称
Material name
类型
Type
产地
Place of origin
1 列旺色列 Liewangselie 地方品种 Landrace 中国西藏 Tibet, China
2 泊克 Boke 地方品种 Landrace 中国西藏 Tibet, China
3 米如红 Miruhong 地方品种 Landrace 中国西藏 Tibet, China
4 地方 Difang 地方品种 Landrace 中国西藏 Tibet, China
5 少岗兰 Shaoganglan 地方品种 Landrace 中国西藏 Tibet, China
6 通门西卡白 Tongmenxikabai 地方品种 Landrace 中国西藏 Tibet, China
7 勾芒青稞 Goumang qingke 地方品种 Landrace 中国西藏 Tibet, China
8 翁木东 Wengmudong 地方品种 Landrace 中国西藏 Tibet, China
9 白浪兰 Bailanglan 地方品种 Landrace 中国西藏 Tibet, China
10 青稞 Qingke 地方品种 Landrace 中国西藏 Tibet, China
11 查久青稞 Chajiu qingke 地方品种 Landrace 中国西藏 Tibet, China
12 青稞 Qing ke 地方品种 Landrace 中国西藏 Tibet, China
13 插1号 Cha 1 hao 地方品种 Landrace 中国西藏 Tibet, China
14 曼多红 Manduohong 地方品种 Landrace 中国西藏 Tibet, China
15 西邓柯1号 Xidengke 1 hao 地方品种 Landrace 中国西藏 Tibet, China
16 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
17 吉塘白 Jitangbai 地方品种 Landrace 中国西藏 Tibet, China
18 白勾芒 Bai goumang 地方品种 Landrace 中国西藏 Tibet, China
19 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
20 紫青稞 Zi qingke 地方品种 Landrace 中国西藏 Tibet, China
21 藏青334 Zangqing 334 选育品种 Breeding line 中国西藏 Tibet, China
22 耐那 Naina 地方品种 Landrace 中国西藏 Tibet, China
23 贡嘎嘎穷 Gonggagaqiong 地方品种 Landrace 中国西藏 Tibet, China
24 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
25 拉萨勾芒 Lasa goumang 地方品种 Landrace 中国西藏 Tibet, China
26 春青稞 Chun qingke 地方品种 Landrace 中国西藏 Tibet, China
27 紫六棱 Zi liuleng 地方品种 Landrace 中国西藏 Tibet, China
28 紫青稞 Zi qingke 地方品种 Landrace 中国西藏 Tibet, China
29 乃木柴 Naimuchai 地方品种 Landrace 中国西藏 Tibet, China
30 扎如 zharu 地方品种 Landrace 中国西藏 Tibet, China
31 扎骨 zhagu 地方品种 Landrace 中国西藏 Tibet, China
32 木西 Muxi 地方品种 Landrace 中国西藏 Tibet, China
33 长芒白青稞 Changmang bai qingke 地方品种 Landrace 中国西藏 Tibet, China
34 长芒白青稞 Changmang bai qingke 地方品种 Landrace 中国西藏 Tibet, China
35 长芒白青稞 Changmang bai qingke 地方品种 Landrace 中国西藏 Tibet, China
36 长芒密穗 Changmang misui 地方品种 Landrace 中国西藏 Tibet, China
37 长芒紫壳青稞 Changmang zike qingke 地方品种 Landrace 中国西藏 Tibet, China
38 长芒紫壳青稞 Changmang zike qingke 地方品种 Landrace 中国西藏 Tibet, China
39 长芒黑青稞 Changmang hei qingke 地方品种 Landrace 中国西藏 Tibet, China
40 乌久 Wujiu 地方品种 Landrace 中国西藏 Tibet, China
41 巴西巴塞 Baxibasai 地方品种 Landrace 中国西藏 Tibet, China
42 巴金嘎母 Bajingamu 地方品种 Landrace 中国西藏 Tibet, China
43 比芒玛 Bimangma 地方品种 Landrace 中国西藏 Tibet, China
44 甲泥 Jiani 地方品种 Landrace 中国西藏 Tibet, China
45 四棱白青稞 Sileng bai qingke 地方品种 Landrace 中国西藏 Tibet, China
46 四棱蓝青稞 Sileng lan qingke 地方品种 Landrace 中国西藏 Tibet, China
47 白四棱长芒 Bai sileng changmang 地方品种 Landrace 中国西藏 Tibet, China
48 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
49 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
50 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
51 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
52 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
53 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
54 尼那达珠玛 Ninadazhuma 地方品种 Landrace 中国西藏 Tibet, China
55 雄马 Xiongma 地方品种 Landrace 中国西藏 Tibet, China
56 紫青稞 Zi qingke 地方品种 Landrace 中国西藏 Tibet, China
57 对芒紫青稞 Duimang zi qingke 地方品种 Landrace 中国西藏 Tibet, China
58 对芒紫青稞 Duimang zi qingke 地方品种 Landrace 中国西藏 Tibet, China
59 对芒紫青稞 Duimang zi qingke 地方品种 Landrace 中国西藏 Tibet, China
60 加拿大米大麦 Canada mi damai 未知 Unkown 加拿大 Canada
61 押托黄 Yatuohuang 地方品种 Landrace 中国西藏 Tibet, China
62 扎仁 Zharen 地方品种 Landrace 中国西藏 Tibet, China
63 扎尼嘎布 Zhanigabu 地方品种 Landrace 中国西藏 Tibet, China
64 对芒青稞 Duimang qingke 地方品种 Landrace 中国西藏 Tibet, China
65 对芒青稞 Duimang qingke 地方品种 Landrace 中国西藏 Tibet, China
66 奶玛 Naima 地方品种 Landrace 中国西藏 Tibet, China
67 紫大麦 Zi damai 地方品种 Landrace 中国西藏 Tibet, China
68 紫大麦 Zi damai 地方品种 Landrace 中国西藏 Tibet, China
69 紫大麦 Zi damai 地方品种 Landrace 中国西藏 Tibet, China
70 紫钩芒青稞 Zi goumang qingke 地方品种 Landrace 中国西藏 Tibet, China
71 紫钩芒青稞 Zi goumang qingke 地方品种 Landrace 中国西藏 Tibet, China
72 喜马拉雅2号 Ximalaya 2 hao 选育品种 Breeding line 中国西藏 Tibet, China
73 喜马拉雅6号 Ximalaya 6 hao 选育品种 Breeding line 中国西藏 Tibet, China
74 WAS3(01WA-13860.5) 选育品种 Breeding line 美国 USA
75 俄母1号 Emu 1 hao 地方品种 Landrace 中国四川 Sichuan, China
76 岗托青稞 Gangtuo qingke 地方品种 Landrace 中国四川 Sichuan, China
77 黑青稞 Hei qingke 地方品种 Landrace 中国四川 Sichuan, China
78 丹巴黑青稞 Danba hei qingke 地方品种 Landrace 中国四川 Sichuan, China
79 813 选育品种 Breeding line 中国四川 Sichuan, China
80 乾宁青稞 Qianning qingke 地方品种 Landrace 中国四川 Sichuan, China
81 白玉青稞 Baiyu qingke 地方品种 Landrace 中国四川 Sichuan, China
82 603 选育品种 Breeding line 中国四川 Sichuan, China
83 春青稞Chun qingke 地方品种 Landrace 中国四川 Sichuan, China
84 阿青5号 Aqing 5 hao 选育品种 Breeding line 中国四川 Sichuan, China
85 甘青2号 Ganqing 2 hao 选育品种 Breeding line 中国甘肃 Gansu, China
86 9516 地方品种 Landrace 中国甘肃 Gansu, China
87 肚里黄 Dulihuang 地方品种 Landrace 中国甘肃 Gansu, China
88 喜马拉雅6号(系选) Ximalaya 6 hao(SB) 选育品种 Breeding line 中国西藏 Tibet, China
89 喜马拉雅15号 Ximalaya 15 hao 选育品种 Breeding line 中国西藏 Tibet, China
90 山青7号 Shanqing 7 hao 选育品种 Breeding line 中国西藏 Tibet, China
91 白地村青稞 Baidicun qingke 地方品种 Landrace 中国西藏 Tibet, China
92 北青1号 Beiqing 1 hao 选育品种 Breeding line 中国青海 Qinghai, China
93 北青3号 Beiqing 3 hao 选育品种 Breeding line 中国青海 Qinghai, China
94 北青4号 Beiqing 4 hao 选育品种 Breeding line 中国青海 Qinghai, China
95 北青5号 Beiqing 5 hao 选育品种 Breeding line 中国青海 Qinghai, China
96 昆仑3号 Kunlun 3 hao 选育品种 Breeding line 中国青海 Qinghai, China
97 昆仑10号 Kunlun 10 hao 选育品种 Breeding line 中国青海 Qinghai, China
98 昆仑12号 Kunlun 12 hao 选育品种 Breeding line 中国青海 Qinghai, China
99 冬青1号 Dongqing 1 hao 选育品种 Breeding line 中国青海 Qinghai, China
100 莫多吉1号 Modongji 1 hao 地方品种 Landrace 中国青海 Qinghai, China
101 循化白青稞 Xunhua bai qingke 地方品种 Landrace 中国青海 Qinghai, China
102 循化蓝青稞 Xunhua lan qingke 地方品种 Landrace 中国青海 Qinghai, China
103 南繁3号 Nanfan 3 hao 选育品种 Breeding line 中国青海 Qinghai, China
104 矮秆齐(系选) Aiganqi (SB) 选育品种 Breeding line 中国青海 Qinghai, China
105 北青2号 Beiqing 2 hao 选育品种 Breeding line 中国青海 Qinghai, China
106 北青3号(系选) Beiqing 3 hao(SB) 选育品种 Breeding line 中国青海 Qinghai, China
107 洛南火烧头露仁 Luonan huoshaotouluren 地方品种 Landrace 中国青海 Qinghai, China
108 ICNBF8-588SEL.1AP 选育品种 Breeding line 美国 USA
109 2009-119 选育品种 Breeding line 中国青海 Qinghai, China
110 861918 选育品种 Breeding line 中国青海 Qinghai, China
111 Bang-Iu 选育品种 Breeding line 墨西哥 Mexico
112 昆仑8号 Kunlun 8 hao 选育品种 Breeding line 中国青海 Qinghai, China
113 矮秆齐 Aiganqi 选育品种 Breeding line 中国青海 Qinghai, China
114 昆仑3号 Kunlun 3 hao 选育品种 Breeding line 中国青海 Qinghai, China
115 门源白青稞 Menyuan bai qingke 地方品种 Landrace 中国青海 Qinghai, China
116 祁连白浪鼓 Qilian bailanggu 地方品种 Landrace 中国青海 Qinghai, China
117 海晏白青稞 Haiyan bai qingke 地方品种 Landrace 中国青海 Qinghai, China
118 湟中六棱青稞 Huangzhong liuleng qingke 地方品种 Landrace 中国青海 Qinghai, China
119 互助白长芒 Huzhu bai changmang 地方品种 Landrace 中国青海 Qinghai, China
120 三月黄 Sanyuehuang 地方品种 Landrace 中国青海 Qinghai, China
121 六棱头 Liulengtou 地方品种 Landrace 中国青海 Qinghai, China
122 褐青稞 He qingke 地方品种 Landrace 中国青海 Qinghai, China
123 红青稞 Hong qingke 地方品种 Landrace 中国青海 Qinghai, China
124 蓝青稞 Lan qingke 地方品种 Landrace 中国青海 Qinghai, China
125 紫青稞 Zi qingke 地方品种 Landrace 中国青海 Qinghai, China
126 甘青4号 Ganqing 4 hao 选育品种 Breeding line 中国甘肃 Gansu, China
127 9619 地方品种 Landrace 中国甘肃 Gansu, China
128 北青2号(系选) Beiqing 2 hao(SB) 选育品种 Breeding line 中国青海 Qinghai, China
129 北青4号(系选) Beiqing 4 hao(SB) 选育品种 Breeding line 中国青海 Qinghai, China
130 北青8号 Beiqing 8 hao 选育品种 Breeding line 中国青海 Qinghai, China
131 黑老鸦 Heilaoya 地方品种 Landrace 中国青海 Qinghai, China
132 紫颖大麦 Ziying damai 地方品种 Landrace 中国青海 Qinghai, China
133 鉴34 Jian 34 选育品种 Breeding line 中国青海 Qinghai, China
134 繁29 Fan 29 选育品种 Breeding line 中国青海 Qinghai, China
135 86024 野生品种 Wild 中国西藏 Tibet, China
136 86770 野生品种 Wild 中国西藏 Tibet, China
137 86923 野生品种 Wild 中国西藏 Tibet, China
138 长芒紫青稞 Changmang zi qingke 地方品种 Landrace 中国青海 Qinghai, China
139 白青稞 Bai qingke 地方品种 Landrace 中国青海 Qinghai, China
140 红青稞 Hong qingke 地方品种 Landrace 中国青海 Qinghai, China
141 青稞 Qingke 地方品种 Landrace 中国青海 Qinghai, China
142 康青7号 Kangqing 7 hao 选育品种 Breeding line 中国四川 Sichuan, China
143 9517 地方品种 Landrace 中国甘肃 Gansu, China
144 9726 地方品种 Landrace 中国四川 Sichuan, China
145 9823 地方品种 Landrace 中国四川 Sichuan, China
146 XQ0168 地方品种 Landrace 中国西藏 Tibet, China
147 XQ0419 地方品种 Landrace 中国西藏 Tibet, China
148 XQ0507 地方品种 Landrace 中国西藏 Tibet, China
149 XQ0758 地方品种 Landrace 中国西藏 Tibet, China
150 XQ0396 地方品种 Landrace 中国西藏 Tibet, China
151 XQ0383 地方品种 Landrace 中国西藏 Tibet, China
152 XQ0987 地方品种 Landrace 中国西藏 Tibet, China
153 XQ0280 地方品种 Landrace 中国西藏 Tibet, China
154 XQ0783 地方品种 Landrace 中国西藏 Tibet, China
155 XQ0317 地方品种 Landrace 中国西藏 Tibet, China
156 XQ0346 地方品种 Landrace 中国西藏 Tibet, China
157 普巴绒白青稞 Pubarong bai qingke 地方品种 Landrace 中国四川 Sichuan, China
158 藏青80 Zangqing 80 选育品种 Breeding line 中国西藏 Tibet, China
159 长芒红青稞 Changmang hong qingke 地方品种 Landrace 中国四川 Sichuan, China
160 小金新宅黑 Xiaojinxinzhaihei 地方品种 Landrace 中国四川 Sichuan, China
161 阿坝330 Aba 330 地方品种 Landrace 中国四川 Sichuan, China
162 北青1号 Beiqing 1 hao 选育品种 Breeding line 中国青海 Qinghai, China
163 足捉六棱 Zuzhuo liuleng 地方品种 Landrace 中国四川 Sichuan, China
164 松潘紫青稞 Songpan zi qingke 地方品种 Landrace 中国四川 Sichuan, China
165 未知 Unknown 地方品种 Landrace 中国四川 Sichuan, China
166 野生六棱 Yesheng liuleng 野生品种 Wild 中国四川 Sichuan, China
167 九龙冬青稞 Jiulong dong qingke 地方品种 Landrace 中国四川 Sichuan, China
168 矮秆白四棱 Aigan bai sileng 地方品种 Landrace 中国四川 Sichuan, China
169 白六棱系株 Bai liuleng xizhu 选育品种 Breeding line 中国四川 Sichuan, China
170 绿青稞 Lv qingke 地方品种 Landrace 中国四川 Sichuan, China
171 甘孜黑马尾 Ganzi heimawei 地方品种 Landrace 中国四川 Sichuan, China
172 春74S Chun 74S 地方品种 Landrace 中国四川 Sichuan, China
173 稻城青稞 Daocheng qingke 地方品种 Landrace 中国四川 Sichuan, China
174 康青1号 Kangqing 1 hao 选育品种 Breeding line 中国四川 Sichuan, China
175 冬青8号 Dongqing 8 hao 选育品种 Breeding line 中国西藏 Tibet, China
176 冬青15号 Dongqing 15 hao 选育品种 Breeding line 中国西藏 Tibet, China
177 冬青17号 Dongqing 17 hao 选育品种 Breeding line 中国西藏 Tibet, China
178 冬青11号 Dongqing 11 hao 选育品种 Breeding line 中国西藏 Tibet, China
179 冬青16号 Dongqing 16 hao 选育品种 Breeding line 中国西藏 Tibet, China
180 云稞1号 Yunke 1 hao 选育品种 Breeding line 中国云南 Yunnan, China
181 甘青3号 Ganqing 3 hao 选育品种 Breeding line 中国甘肃 Gansu, China
182 理塘勾芒 Litang goumang 地方品种 Landrace 中国四川 Sichuan, China
183 喜马拉8号 Ximala 8 hao 选育品种 Breeding line 中国西藏 Tibet, China
184 山青7号(系选) Shanqing 7 hao(SB) 选育品种 Breeding line 中国西藏 Tibet, China
185 格科66 Geke 66 选育品种 Breeding line 中国青海 Qinghai, China
186 喜马拉6号 Ximala 6 hao 选育品种 Breeding line 中国西藏 Tibet, China
187 喜马拉22号 Ximala 22 hao 选育品种 Breeding line 中国西藏 Tibet, China
188 耳南 Ernan 地方品种 Landrace 中国西藏 Tibet, China
189 针芒黑青稞 Zhenmang hei qingke 地方品种 Landrace 中国四川 Sichuan, China
190 肚里黄 Dulihuang 地方品种 Landrace 中国甘肃 Gansu, China
191 2005-3922005-392 选育品种 Breeding line 未知 Unkown
192 北青6号 Beiqing 6 hao 选育品种 Breeding line 中国青海 Qinghai, China
193 甘青4号 Ganqing 4 hao 选育品种 Breeding line 中国甘肃 Gansu, China
194 藏青3179 Zangqing 3179 选育品种 Breeding line 中国西藏 Tibet, China
195 QB11 选育品种 Breeding line 中国西藏 Tibet, China
196 昆仑13 Kunlun 13 选育品种 Breeding line 中国青海 Qinghai, China
197 勾芒青稞 Goumang qingke 地方品种 Landrace 中国西藏 Tibet, China
198 米如红 Miruhong 地方品种 Landrace 中国西藏 Tibet, China
199 少岗兰 Shaoganglan 地方品种 Landrace 中国西藏 Tibet, China
200 青稞 Qingke 地方品种 Landrace 中国西藏 Tibet, China
201 白浪兰 Bailanglan 地方品种 Landrace 中国西藏 Tibet, China
202 勾芒青稞 Goumang qingke 地方品种 Landrace 中国西藏 Tibet, China
203 阿曼都 Amandu 地方品种 Landrace 中国西藏 Tibet, China
204 满都 Mandu 地方品种 Landrace 中国西藏 Tibet, China
205 西邓柯1号(系选) Xidengke 1 hao(SB) 地方品种 Landrace 中国西藏 Tibet, China
206 紫竹 Zizhu 地方品种 Landrace 中国西藏 Tibet, China
207 藏青334(系选) Zangqing 334(SB) 选育品种 Breeding line 中国西藏 Tibet, China
208 昆仑10 Kunlun 10 选育品种 Breeding line 中国青海 Qinghai, China
209 欧泽 Ouze 地方品种 Landrace 中国西藏 Tibet, China
210 玛若 Maruo 地方品种 Landrace 中国西藏 Tibet, China
211 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
212 古路 Gulu 地方品种 Landrace 中国西藏 Tibet, China
213 紫青稞 Zi qingke 地方品种 Landrace 中国西藏 Tibet, China
214 次玛 Cima 地方品种 Landrace 中国西藏 Tibet, China
215 日雪青稞 Rixue qingke 地方品种 Landrace 中国西藏 Tibet, China
216 永2677 Yong 2677 地方品种 Landrace 中国西藏 Tibet, China
217 生次 Shengci 地方品种 Landrace 中国西藏 Tibet, China
218 乃那 Naina 地方品种 Landrace 中国西藏 Tibet, China
219 乃那 Naina 地方品种 Landrace 中国西藏 Tibet, China
220 乃那古 Nainagu 地方品种 Landrace 中国西藏 Tibet, China
221 门琼-1 Menqiong -1 地方品种 Landrace 中国西藏 Tibet, China
222 扎尼玛 Zhanima 地方品种 Landrace 中国西藏 Tibet, China
223 扎骨 Zhagu 地方品种 Landrace 中国西藏 Tibet, China
224 日近尼嘎 Rijinniga 地方品种 Landrace 中国西藏 Tibet, China
225 长芒紫壳青稞 Changmang zike qingke 地方品种 Landrace 中国西藏 Tibet, China
226 长芒紫壳青稞 Changmang zike qingke 地方品种 Landrace 中国西藏 Tibet, China
227 长芒黑青稞 Changmang hei qingke 地方品种 Landrace 中国西藏 Tibet, China
228 长芒黑青稞 Changmang hei qingke 地方品种 Landrace 中国西藏 Tibet, China
229 长芒黑青稞 Changmang hei qingke 地方品种 Landrace 中国西藏 Tibet, China
230 四棱白青稞 Sileng bai qingke 地方品种 Landrace 中国西藏 Tibet, China
231 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
232 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
233 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
234 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
235 加久古日 Jiajiuguri 地方品种 Landrace 中国西藏 Tibet, China
236 勒那 Lena 地方品种 Landrace 中国西藏 Tibet, China
237 对芒白青稞 Duimang bai qingke 地方品种 Landrace 中国西藏 Tibet, China
238 对芒紫青稞 Duimang zi qingke 地方品种 Landrace 中国西藏 Tibet, China
239 对芒紫青稞 Duimang zi qingke 地方品种 Landrace 中国西藏 Tibet, China
240 对芒紫青稞 Duimang zi qingke 地方品种 Landrace 中国西藏 Tibet, China
241 对芒蓝青稞 Duimang lan qingke 地方品种 Landrace 中国西藏 Tibet, China
242 瓦米尼嘎 Waminiga 地方品种 Landrace 中国西藏 Tibet, China
243 紫钩芒 Zi goumang 地方品种 Landrace 中国西藏 Tibet, China
244 4TH HBSNS-57 选育品种 Breeding line 墨西哥 Mexico
245 ZDM3812 未知 Unkown 未知 Unkown
246 ZDM3838 未知 Unkown 未知 Unkown
247 ZDM3868 未知 Unkown 未知 Unkown
248 ZDM3908 未知 Unkown 未知 Unkown
249 ZDM4092 未知 Unkown 未知 Unkown
250 ZDM4115 未知 Unkown 未知 Unkown
251 ZDM4139 未知 Unkown 未知 Unkown
252 ZDM4242 未知 Unkown 未知 Unkown
253 ZDM4306 未知 Unkown 未知 Unkown
254 ZDM4345 未知 Unkown 未知 Unkown
255 ZDM4466 未知 Unkown 未知 Unkown
256 ZDM4855 未知 Unkown 未知 Unkown
257 ZDM4694 未知 Unkown 未知 Unkown
258 HarunaNijo 选育品种 Breeding line 日本 Japan
259 长芒紫壳青稞 Changmang zike qingke 地方品种 Landrace 中国西藏 Tibet, China
260 白壳 Baike 地方品种 Landrace 中国西藏 Tibet, China
261 扁圆穗灰 Bianyuansuihui 地方品种 Landrace 中国西藏 Tibet, China
262 永2677(系选) Yong 2677(SB) 地方品种 Landrace 中国西藏 Tibet, China
263 扎尼玛 Zhanima 地方品种 Landrace 中国西藏 Tibet, China
264 春大麦 Chun damai 地方品种 Landrace 中国山西 Shanxi, China
265 草大麦 Cao damai 地方品种 Landrace 中国山西 Shanxi, China
266 大麦 Damai 地方品种 Landrace 中国山西 Shanxi, China
267 皮大麦 Pi damai 地方品种 Landrace 中国山东 Shandong, China
268 米大麦 Mi damai 地方品种 Landrace 中国山东 Shandong, China
269 米大麦 Mi damai 地方品种 Landrace 中国山东 Shandong, China
270 火灯芒 Huodengmang 地方品种 Landrace 中国河南 Henan, China
271 芒大麦 Mang damai 地方品种 Landrace 中国河南 Henan, China
272 大长芒大麦 Dachangmang damai 地方品种 Landrace 中国河南 Henan, China
273 芒大麦 Mang damai 地方品种 Landrace 中国河南 Henan, China
274 芒大麦 Mang damai 地方品种 Landrace 中国河南 Henan, China
275 油露大麦 Youlu damai 地方品种 Landrace 中国河南 Henan, China
276 长芒大麦 Changmang damai 地方品种 Landrace 中国陕西 Shaanxi, China
277 毛大麦 Mao damai 地方品种 Landrace 中国陕西 Shaanxi, China
278 短芒青稞 Duanmang qingke 地方品种 Landrace 中国陕西 Shaanxi, China
279 洋辣子大麦 Yanglazi damai 地方品种 Landrace 中国陕西 Shaanxi, China
280 长芒青稞 Changmang qingke 地方品种 Landrace 中国陕西 Shaanxi, China
281 东宁皮4号 Dongningpi 4 hao 地方品种 Landrace 中国黑龙江 Heilongjiang, China
282 克山皮1-1 Keshanpi 1-1 地方品种 Landrace 中国黑龙江 Heilongjiang, China
283 克山皮1-2 Keshanpi 1-2 地方品种 Landrace 中国黑龙江 Heilongjiang, China
284 德都皮3号 Dedupi 3 hao 地方品种 Landrace 中国黑龙江 Heilongjiang, China
285 早熟大麦 Zaoshu damai 地方品种 Landrace 中国辽宁 Liaoning, China
286 170 地方品种 Landrace 中国黑龙江 Heilongjiang, China
287 化德六棱 Huade liuleng 地方品种 Landrace 中国内蒙古 Inner Mongolia, China
288 湟源秃青稞 Huangyuantu qingke 地方品种 Landrace 中国青海 Qinghai, China
289 海南青青稞 Hainan qing qingke 地方品种 Landrace 中国青海 Qinghai, China
290 莎车青稞 Shache qingke 地方品种 Landrace 中国新疆 Xinjiang, China
291 本大麦 Ben damai 地方品种 Landrace 中国江苏 Jiangsu, China
292 四棱大麦 Sileng damai 地方品种 Landrace 中国江苏 Jiangsu, China
293 六棱子 Liulengzi 地方品种 Landrace 中国江苏 Jiangsu, China
294 六棱长芒大麦 Liuleng changmang damai 地方品种 Landrace 中国江苏 Jiangsu, China
295 朝天六棱 Chaotian liuleng 地方品种 Landrace 中国江苏 Jiangsu, China
296 兴化老来光 Xinghua laolaiguang 地方品种 Landrace 中国江苏 Jiangsu, China
297 恩施三月黄 Enshi sanyu huang 地方品种 Landrace 中国湖北 Hubei, China
298 老乌胡须麦 Laowuhuxumai 地方品种 Landrace 中国湖南 Hunan, China
299 三月黄 Sanyuehuang 地方品种 Landrace 中国湖南 Hunan, China
300 清原大麦 Qingyuan damai 地方品种 Landrace 中国辽宁 Liaoning, China
301 毛大麦 Mao damai 地方品种 Landrace 中国湖北 Hubei, China
302 索阿 Suoa 地方品种 Landrace 中国西藏 Tibet, China
303 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
304 白青稞 Bai qingke 地方品种 Landrace 中国西藏 Tibet, China
305 钩芒青稞 Goumang qingke 地方品种 Landrace 中国西藏 Tibet, China
306 龙中紫 Longzhongzi 地方品种 Landrace 中国西藏 Tibet, China
307 无芒大麦 Wumang damai 地方品种 Landrace 中国甘肃 Gansu, China
308 光芒大麦 Guangmang damai 地方品种 Landrace 中国甘肃 Gansu, China
309 大麦 Damai 地方品种 Landrace 中国山西 Shanxi, China
310 春大麦 Chun damai 地方品种 Landrace 中国山西 Shanxi, China
311 江苏元麦106号 Jiangsu yuanmai 106 hao 地方品种 Landrace 中国江苏 Jiangsu, China
312 江苏元麦63号 Jiangsu yuanmai 63 hao 地方品种 Landrace 中国江苏 Jiangsu, China
313 长毛大麦 Changmao damai 地方品种 Landrace 中国贵州 Guizhou, China
314 米大麦 Mi damai 地方品种 Landrace 中国贵州 Guizhou, China
315 乌咀米麦 Wuju mimai 地方品种 Landrace 中国贵州 Guizhou, China
316 M87-9/Kiptr 选育品种 Breeding line 中国吉林 Jilin, China

Table 1

Performance of cellulose and hemicellulose contents of barley grains in different pilots"

性状
Trait
环境
Environment
均值
Mean (%)
标准差
SE (%)
变幅
Range (%)
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
纤维素 19CD 9.12 3.50 2.65-20.55 38.65 1.23 0.51
Cellulose 20KD 9.82 3.37 5.20-22.29 34.32 1.50 1.44
20CD 8.37 3.79 4.03-19.65 45.28 1.66 1.41
21KD 8.73 3.15 4.90-18.65 36.08 1.75 2.03
半纤维素 19CD 12.58 3.75 7.41-27.74 30.74 1.26 0.57
Hemicellulose 20KD 12.37 3.92 6.99-23.49 31.69 1.02 0.04
20CD 11.47 3.56 8.02-20.73 31.04 1.65 1.15
21KD 12.91 2.84 9.48-20.85 22.00 1.81 2.05

Table 2

Multi-environment combined variance in cellulose and hemicellulose content of barley grains"

性状
Trait
变异来源
Source of variances
自由度
DF
方差和
SS
均方
MS
F
F-value
P
P-value
纤维素 基因型Genotype 334 25,394.64 76.03 140.20 <0.0001
Cellulose 环境Environment 3 844.12 281.37 518.85 <0.0001
GE互作GE interaction 797 3568.58 4.48 8.26 <0.0001
误差Error 1194 647.51 0.54
半纤维素 基因型Genotype 334 25,396.63 76.04 87.10 <0.0001
Hemicellulose 环境Environment 3 678.89 226.30 259.23 <0.0001
GE互作GE interaction 799 4404.95 5.51 6.32 <0.0001
误差Error 1194 1042.31 0.87

Fig. 1

Population structure analysis of 316 barley materials A: ΔK-value calculated by assuming different K-values; B: genetic structure analyzed by structure software (red: the first subgroup; green: the second subgroup; blue: the third subgroup)."

Fig. 2

Genome-wide association analysis of barley grain cellulose and hemicellulose contents in different environments A. B, C, and D represent Manhattan diagram of cellulose content in 2019 Chengdu, 2020 Kangding, 2020 Chengdu, and 2021 Kangding, respectively; E, F, G, and H represent the Manhattan diagram of hemicellulose content in 2019 Chengdu, 2020 Kangding, 2020 Chengdu, and 2021 Kangding, respectively."

Table S2

Repeated SNP sites with significant correlation to cellulose content"

标记
Marker
染色体
Chr.
位置
Position
环境
Environment
表型贡献率
R2 (%)
S1H_423323488 1H 423,323,488 20CD/21KD 10.74/11.86
S1H_469557737 1H 469,557,737 20CD/21KD 12.58/12.89
S2H_12860981 2H 12,860,981 20KD/21KD 14.54/15.22
S2H_25574662 2H 25,574,662 20CD/21KD 17.46/13.99
S2H_25574694 2H 25,574,694 20KD/20CD/21KD 12.09/13.32/15.09
S2H_25574741 2H 25,574,741 20CD/21KD 10.06/11.56
S2H_28768234 2H 28,768,234 19CD/20CD/21KD 14.07/14.56/12.90
S2H_678958186 2H 678,958,186 20CD/21KD 12.86/12.06
S2H_678958195 2H 678,958,195 20CD/21KD 13.90/11.14
S2H_678958256 2H 678,958,256 20CD/21KD 11.46/10.69
S2H_678958325 2H 678,958,325 20CD/21KD 13.85/11.14
S2H_695908750 2H 695,908,750 19CD/20CD 15.18/13.99
S2H_745314797 2H 745,314,797 20CD/21KD 9.17/10.51
S3H_23461365 3H 23,461,365 20CD/21KD 9.47/11.30
S3H_23461453 3H 23,461,453 20CD/21KD 9.43/11.25
S3H_23461558 3H 23,461,558 20CD/21KD 10.08/11.30
S3H_23461566 3H 23,461,566 20CD/21KD 10.08/11.30
S3H_33151566 3H 33,151,566 20CD/21KD 9.57/10.88
S3H_35751105 3H 35,751,105 20CD/21KD 14.34/18.25
S3H_35751131 3H 35,751,131 20CD/21KD 14.34/18.25
S3H_35751168 3H 35,751,168 20CD/21KD 14.40/18.25
S3H_35751189 3H 35,751,189 20CD/21KD 14.34/18.25
S3H_446374640 3H 446,374,640 20CD/21KD 9.70/12.66
S3H_655971058 3H 655,971,058 20CD/21KD 17.80/15.05
S3H_655971059 3H 655,971,059 20CD/21KD 19.38/16.71
S3H_655971232 3H 655,971,232 20CD/21KD 16.94/13.09
S3H_655971263 3H 655,971,263 20CD/21KD 19.59/15.79
S4H_174473352 4H 174,473,352 20CD/21KD 11.91/14.04
S4H_174473511 4H 174,473,511 20CD/21KD 11.91/14.04
S4H_403822659 4H 403,822,659 20CD/21KD 10.57/10.85
S4H_564736912 4H 564,736,912 19CD/20KD 14.11/14.76
S4H_564875137 4H 564,875,137 20CD/21KD 15.09/15.98
S4H_597291646 4H 597,291,646 20CD/21KD 10.31/12.35
S4H_597595727 4H 597,595,727 20CD/21KD 10.91/12.03
S4H_635778344 4H 635,778,344 20CD/21KD 10.67/12.82
S5H_106797598 5H 106,797,598 20CD/21KD 10.46/12.50
S5H_115197569 5H 115,197,569 20CD/21KD 17.97/14.19
S5H_116110297 5H 116,110,297 20CD/21KD 14.30/14.43
S5H_116110492 5H 116,110,492 20CD/21KD 11.44/13.35
S5H_118565802 5H 118,565,802 20CD/21KD 13.14/12.38
S5H_189378116 5H 189,378,116 20CD/21KD 10.96/13.13
S5H_208282050 5H 208,282,050 20CD/21KD 9.85/10.92
S5H_208282120 5H 208,282,120 20CD/21KD 12.16/14.99
S5H_208282187 5H 208,282,187 20CD/21KD 9.74/12.24
S5H_243828851 5H 243,828,851 20CD/21KD 10.40/14.19
S5H_250183992 5H 250,183,992 20CD/21KD 19.24/17.77
S5H_355592977 5H 355,592,977 20CD/21KD 11.12/11.96
S5H_437943810 5H 437,943,810 19CD/20CD/21KD 18.22/11.75/12.94
S5H_45701117 5H 45,701,117 20CD/21KD 12.46/12.42
S5H_471635005 5H 471,635,005 20KD/20CD/21KD 14.14/12.41/17.32
S5H_575754836 5H 575,754,836 20CD/21KD 15.35/16.18
S5H_610654170 5H 610,654,170 20CD/21KD 14.56/13.13
S5H_617169823 5H 617,169,823 20CD/21KD 10.42/10.89
S5H_617169839 5H 617,169,839 20CD/21KD 10.42/10.89
S5H_617169851 5H 617,169,851 20CD/21KD 10.43/10.89
S5H_623960116 5H 623,960,116 20CD/21KD 15.42/13.88
S6H_498869649 6H 498,869,649 20CD/21KD 10.32/15.57
S6H_538971236 6H 538,971,236 20CD/21KD 22.30/15.68
S7H_46353142 7H 46,353,142 20CD/21KD 11.59/11.92
S7H_46353143 7H 46,353,143 20CD/21KD 11.59/11.92
S7H_46353167 7H 46,353,167 20CD/21KD 11.59/11.92
S7H_548584264 7H 548,584,264 20CD/21KD 18.94/14.47
S7H_605401068 7H 605,401,068 20CD/21KD 10.36/11.34
S7H_615136739 7H 615,136,739 20CD/21KD 11.68/11.20
S7H_615136754 7H 615,136,754 20CD/21KD 12.08/11.92

Table S3

Repeated SNP sites with significant correlation to himicellulose content"

标记
Marker
染色体
Chr.
位置
Position
环境
Environment
表型贡献率
R2 (%)
S1H_469557737 1H 469,557,737 20CD/21KD 12.69/13.96
S2H_25574662 2H 25,574,662 20CD/21KD 15.17/13.89
S2H_25574694 2H 25,574,694 20CD/21KD 12.01/14.64
S2H_28768234 2H 28,768,234 19CD/20CD/21KD 12.31/13.35/10.84
S2H_678958186 2H 678,958,186 20CD/21KD 10.94/11.35
S3H_33151566 3H 33,151,566 20CD/21KD 9.50/10.72
S3H_35751105 3H 35,751,105 20CD/21KD 16.23/20.65
S3H_35751131 3H 35,751,131 20CD/21KD 16.23/20.65
S3H_35751168 3H 35,751,168 20CD/21KD 16.28/20.65
S3H_35751189 3H 35,751,189 20CD/21KD 16.23/20.65
S3H_655971058 3H 655,971,058 20CD/21KD 16.07/14.97
S3H_655971059 3H 655,971,059 20CD/21KD 17.01/14.70
S3H_655971263 3H 655,971,263 20CD/21KD 16.58/13.21
S4H_564875137 4H 564,875,137 20CD/21KD 14.28/13.22
S4H_597642548 4H 597,642,548 20CD/21KD 12.81/13.96
S5H_115197569 5H 115,197,569 20CD/21KD 18.06/14.24
S5H_116110297 5H 116,110,297 20CD/21KD 13.21/13.26
S5H_189378116 5H 189,378,116 20CD/21KD 10.12/13.27
S5H_208282050 5H 208,282,050 20CD/21KD 9.72/11.04
S5H_208282120 5H 208,282,120 20CD/21KD 12.42/15.10
S5H_208282187 5H 208,282,187 20CD/21KD 9.72/12.35
S5H_243828851 5H 243,828,851 20CD/21KD 10.42/14.76
S5H_250183992 5H 250,183,992 20CD/21KD 20.32/18.55
S5H_355592977 5H 355,592,977 20CD/21KD 10.30/10.95
S5H_45701117 5H 45,701,117 20CD/21KD 11.36/11.36
S5H_471635005 5H 471,635,005 20CD/21KD 10.09/15.82
S5H_575754836 5H 575,754,836 20CD/21KD 15.70/16.78
S5H_610654170 5H 610,654,170 20CD/21KD 12.47/12.70
S5H_623960116 5H 623,960,116 20CD/21KD 12.42/13.33
S6H_498869649 6H 498,869,649 20CD/21KD 9.37/15.29
S6H_538971236 6H 538,971,236 20CD/21KD 20.40/15.35
S6H_567721168 6H 567,721,168 20CD/21KD 12.47/12.40
S7H_548584264 7H 548,584,264 20CD/21KD 18.97/16.87
S7H_639952628 7H 639,952,628 19CD/21KD 14.41/11.54

Table 3

Candidate gene information related to cellulose and hemicellulose content"

性状
Trait
基因名称
Gene name
物理距离
Physical position
基因注释
Gene annotation
纤维素Cellulose HORVU.MOREX.r3.2HG0106390 23,423,845-23,425,676 UDP-糖基转移酶
UDP-Glycosyltransferase
HORVU.MOREX.r3.2HG0107650 25,753,803-25,755,344 UDP-糖基转移酶
UDP-Glycosyltransferase
HORVU.MOREX.r3.5HG0473460 390,082,833-390,085,950 糖转运蛋白Sugar transporter
HORVU.MOREX.r3.5HG0473520 390,363,062-390,369,863 UDP-葡萄糖4-差向异构酶家族蛋白UDP-glucose 4-epimerase family protein
HORVU.MOREX.r3.5HG0478650 420,417,142-420,425,071 内切葡聚糖酶Endoglucanase
HORVU.MOREX.r3.5HG0478690 420,741,192-420,745,389 糖转运蛋白Sugar transporter
半纤维Hemicellulose HORVU.MOREX.r3.2HG0107650 25,753,803-25,755,344 UDP-糖基转移酶UDP-Glycosyltransferase
[1] 许伟利, 董伟志, 王军, 徐晶, 马云, 沙元赛. 大麦籽粒营养成分及开发研究进展. 大麦与谷类科学, 2019, 36(3): 52-55.
Xu W L, Dong W Z, Wang J, Xu J, Ma Y, Sha Y S. Research progresses on the nutrients of barley grain and their utilization. Barl Cereal Sci, 2019, 36(3): 52-55. (in Chinese with English abstract)
[2] 赵斌, 陈晓东, 季昌好, 朱斌, 王瑞. 不同刈割时期与干燥方式对大麦饲草品质的影响. 草原与草坪, 2020, 40(5): 98-101.
Zhao B, Chen X D, Ji C H, Zhu B, Wang R. Effects of different cutting times and drying methods on the quality of barley forage. Grassland Turf, 2020, 40(5): 98-101. (in Chinese with English abstract)
[3] 赵加涛, 杨向红, 付正波, 字尚永, 刘猛道. 不同大麦品种饲草产量及品质研究. 中国农学通报, 2021, 37(27): 27-31.
doi: 10.11924/j.issn.1000-6850.casb2020-0746
Zhao J T, Yang X H, Fu Z B, Zi S Y, Liu M D. Yield and quality of forage grass of different barley varieties. Chin Agric Sci Bull, 2021, 37(27): 27-31. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2020-0746
[4] 黄水珍, 冯德庆, 黄秀声, 黄小云. 大麦‘花22’不同生育期的饲用品质及呕吐毒素含量. 农学学报, 2021, 11(4): 1-5.
doi: 10.11923/j.issn.2095-4050.cjas20191200299
Huang S Z, Feng D Q, Huang X S, Huang X Y. Forage quality and vomitoxin content of barley Hua 22 at different growth stages. J Agric, 2021, 11(4): 1-5. (in Chinese with English abstract)
[5] Han F, Ullrich S E, Romagosa I, Clancy J A, Froseth J A, Wesenberg D M. Quantitative genetic analysis of acid detergent fiber content in barley grain. J Cereal Sci, 2003, 38: 167-172.
doi: 10.1016/S0733-5210(03)00020-1
[6] Siahsar B A, Peighambari S A, Taleii A R, Naghavi M R, Nabipour A, Sarrafi A. QTL analysis of forage quality traits in barley (Hordeum vulgare L.). Cereal Res Commun, 2009, 37: 479-488.
doi: 10.1556/CRC.37.2009.4.1
[7] Grando S, Baum M, Ceccarelli S, Goodchild A, El-Haramein F Jaby, Jahoor A, Backes G. QTLs for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare × H. spontaneum cross in a Mediterranean environment. Theor Appl Genet, 2005, 110: 688-695.
pmid: 15678328
[8] Surber L, Abdel-Haleem H, Martin J, Hensleigh P, Cash D, Bowman J, Blake T. Mapping quantitative trait loci controlling variation in forage quality traits in barley. Mol Breed, 2011, 28: 189-200.
doi: 10.1007/s11032-010-9473-6
[9] Abdel-Haleem H, Bowman J G P, Surber L, Blake T. Variation in feed quality traits for beef cattle in Steptoe×Morex barley population. Mol Breed, 2012, 29: 503-514.
doi: 10.1007/s11032-011-9567-9
[10] Burton R A, Shirley N J, King B J, Harvey A J, Fincher G B. The CesA gene family of barley. quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol, 2004, 134: 224-236.
doi: 10.1104/pp.103.032904 pmid: 14701917
[11] Burton R A, Jobling S A, Harvey A J, Shirley N J, Mather D E, Bacic A, Fincher G B. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol, 2008, 146: 1821-1833.
doi: 10.1104/pp.107.114694
[12] Burton R A, Ma G, Baumann U, Harvey A J, Shirley N J, Taylor J, Pettolino F, Bacic A, Beatty M, Simmons C R, Dhugga K S, Rafalski J A, Tingey S V, Fincher G B. A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene. Plant Physiol, 2010, 14: 1716-1728.
[13] 王晓雨. 大麦β-葡聚糖、微量元素含量的全基因组关联分析及纤维素合成酶类基因家族的鉴定. 西北农林科技大学硕士学位论文, 陕西杨凌, 2020.
Wang X Y. Genome-wide Association Study of the β-glucan and Trace Elements Content, and Identification of Cellulose Synthase Gene Family in Barley (Hordeum vulgare). MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2020 (in Chinese with English abstract).
[14] Nishantha M D L C, Jeewani D C, Xing G W, Nie X J, Song W N. Genome-wide identification and analysis of the CslF gene family barley (Hordeum vulgare L.). J Microbiol Biotechnol Food Sci, 2020, 10: 122-126.
doi: 10.15414/jmbfs.2020.10.1.122-126
[15] Houston K, Burton R A, Sznajder B, Rafalski A J, Dhugga K S, Mather D E, Taylor J, Steffenson B J, Waugh R, Fincher G B. A genome-wide association study for culm cellulose content in barley reveals candidate genes co-expressed with members of the CELLULOSE SYNTHASE A gene family. PLoS One, 2015, 10: e0130890.
[16] Buchanan M, Burton R A, Dhugga K S, Rafalski A J, Tingey S V, Shirley N J, Fincher G B. Endo-(1, 4)-β-Glucanase gene families in the grasses: temporal and spatial. Co-transcription of orthologous genes. BMC Plant Biol, 2012, 12: 235.
doi: 10.1186/1471-2229-12-235
[17] Cantarel B L, Coutinho P M, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res, 2009, 37: D233-D238.
[18] Zhong R Q, Ye Z H. Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Sci Int J Exp Plant Biol, 2014, 229: 193-207.
[19] Zhong R, Ye Z H. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol, 2015, 56: 195-214.
doi: 10.1093/pcp/pcu140 pmid: 25294860
[20] 赵宇慧, 李秀秀, 陈倬, 鲁宏伟, 刘羽诚, 张志方, 梁承志. 生物信息学分析方法Ⅰ: 全基因组关联分析概述. 植物学报, 2020, 55: 715-732.
Zhao Y H, Li X X, Chen Z, Lu H W, Liu Y C, Zhang Z F, Liang C Z. Bioinformatics analysis methods. I: Overview of genome-wide association analysis. Acta Bot Sin, 2020, 55: 715-732. (in Chinese with English abstract)
[21] Yang W, Zhao J L, Zhang S H, Chen L, Yang T F, Dong J F, Fu H, Ma Y M, Zhou L, Wang J, Liu W, Liu Q, Liu B. Genome-wide association mapping and gene expression analysis reveal the negative role of OsMYB21 in regulating bacterial blight resistance in rice. Rice (NY), 2021, 14: 58.
doi: 10.1186/s12284-021-00501-z pmid: 34185169
[22] Liu P, Jin Y R, Liu J D, Liu C Y, Yao H P, Luo F Y, Guo Z H, Xia X C, He Z H. Genome-wide association mapping of root system architecture traits in common wheat (Triticum aestivum L.). Euphytica, 2019, 215: 121.
doi: 10.1007/s10681-019-2452-z
[23] Wang M, Yan J B, Zhao J R, Song W, Zhang X B, XiaoY N, Zheng Y L. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci, 2012, 196: 125-131.
doi: 10.1016/j.plantsci.2012.08.004 pmid: 23017907
[24] Wrucke D F, Mamidi S, Rahman M. Genome-wide association study for frost tolerance in canola (Brassica napus L.) under field conditions. J Plant Biochem Biotechnol, 2019, 28: 211-222.
doi: 10.1007/s13562-018-0472-8
[25] 聂石辉, 王仙, 向莉, 张金汕, 李志强, 任毅, 方伏荣. 干旱胁迫对中亚大麦农艺性状的影响及其相关基因定位. 麦类作物学报, 2022, 42: 59-67.
Nie S H, Wang X, Xiang L, Zhang J S, Li Z Q, Ren Y, Fang F R. Responses to drought stress and gene mapping of related agronomic traits of central Asian barley. J Triticeae Crops, 2022, 42: 59-67. (in Chinese with English abstract)
[26] He T H, Beate H C, Tolera A T, Zhang X Q, Chen K F, David M, Paul T, Sharon W, Li C D. Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection. J Exp Bot, 2019, 70: 5603-5616.
doi: 10.1093/jxb/erz332 pmid: 31504706
[27] Fan X Y, Sun Y D, Zhu J, Lyu C, Guo B J, Xu R G. A 191-bp insertion/deletion in GBSS1 region is responsible for the changes in grain amylose content in barley (Hordeum vulgare L.). Mol Breed, 2017, 37: 81.
doi: 10.1007/s11032-017-0677-x
[28] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析. 作物学报, 2021, 47: 1205-1214.
doi: 10.3724/SP.J.1006.2021.01074
Geng L, Huang Y C, Li M D, Xie S G, Ye L Z, Zhang G P. Genome-wide association study of β-glucan content in barley grains. Acta Agron Sin, 2021, 47: 1205-1214. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01074
[29] Hazzouri K M, Hazzouri K M, Khraiwesh B, Amiri K M A, Amiri K M A, Pauli D, Blake T, Mullath M S S K, Mansour D N A L, Salehi-Ashtiani K, Purugganan M, Masmoudi K. Mapping of HKT1;5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Front Plant Sci, 2018, 9: 156.
doi: 10.3389/fpls.2018.00156 pmid: 29515598
[30] Aghnoum R, Bvindi C, Menet G, Hoop B D, Maciel L N, Niks R E. Host/nonhost status and genetics of resistance in barley against three pathotypes of Magnaporthe blast fungi. Euphytica, 2019, 215: 116.
doi: 10.1007/s10681-019-2436-z
[31] 安玉民, 王菊葵, 黄烨, 徐晓梅. 马铃薯秸秆中纤维素与半纤维素含量的测定. 现代农业科技, 2016, (17): 159-160.
An Y M, Wang J K, Huang Y, Xu X M. Determination of cellulose and hemicellulose content in potato stalk. Mod Agric Sci Technol, 2016, (17): 159-160. (in Chinese with English abstract)
[32] Zhu C S, Gore M, Buckler E S, Yu J M. Status and prospects of association mapping in plants. Plant Genomics, 2008, 1: 5-20.
[33] Kaler A S, Purcell L C. Estimation of a significance threshold for genome-wide association studies. BMC Genomics, 2019, 20: 618.
doi: 10.1186/s12864-019-5992-7 pmid: 31357925
[34] Alqudah A M, Sallam A, Baenziger P S, Brner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from barley: a review. J Advanc Res, 2020, 22: 119-135.
[35] Lou Q J, Chen L, Mei H W, Wei H B, Feng F J, Wang P, Xia H, Li T M, Luo L J. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. Exp Bot, 2015, 66: 4749-4757.
doi: 10.1093/jxb/erv246
[36] Zhang X, Ren Z Y, Luo B W, Zhong H X, Ma P, Zhang H K, Hu H M, Wang Y K, Zhang H Y, Liu D, Wu L, Nie Z, Zhu Y H, He W Z, Zhang S Z, Su S Z, Shen Y O, Gao S B. Genetic architecture of maize yield traits dissected by QTL mapping and GWAS in maize. Crop J, 2022, 10: 436-446.
doi: 10.1016/j.cj.2021.07.008
[37] Ma L L, Zhang M Y, Chen J, Qing C Y, He S J, Zou C Y, Yuan G S, Yang C, Peng H, Pan G T, Lübberstedt T, Shen Y O. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theor Appl Genet, 2021, 134: 3305-3318.
doi: 10.1007/s00122-021-03897-w
[38] Li K Q, Wang J, Kuang L Q, Tian Z, Wang X F, Dun X L, Tu J X, Wang H Z. Genome-wide association study and transcriptome analysis reveal key genes affecting root growth dynamics in rapeseed. Biotechnol Biof, 2021, 14: 178.
[39] 马珍珍, 李加纳, Wittkop B, Frauen M, 阎星颖, 刘列钊, 肖阳. 甘蓝型油菜籽粒含油量、蛋白质、纤维素及半纤维素含量QTL分析. 作物学报, 2013, 39: 1214-1222.
doi: 10.3724/SP.J.1006.2013.01214
Ma Z Z, Li J N, Wittkop B, Frauen M, Yan X Y, Liu L Z, Xiao Y. QTL mapping for oil, protein, cellulose, and hemicellulose contents in seeds of Brassica napus L. Acta Agron Sin, 2013, 39: 1214-1222. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01214
[40] Zhang B C, Liu X L, Qian Q, Liu L F, Dong G J, Xiong G Y, Zeng D L, Zhou Y H. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proc Natl Acad Sci USA, 2011, 108: 5110-5115.
doi: 10.1073/pnas.1016144108 pmid: 21383162
[41] Ryae J J, Hyuk C J. Lactic acid fermentation of germinated barley fiber and proliferative function of colonic epithelial cells in loperamide-induced rats. J Med Food, 2010, 13: 950-960.
doi: 10.1089/jmf.2009.1307 pmid: 20673062
[42] Gong J S, Yang C B. Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Res Int, 2012, 48: 916-929.
doi: 10.1016/j.foodres.2011.12.027
[43] Li H Y, Xu L, Liu W J, Fang M Q, Wang N. Assessment of the nutritive value of whole corn stover and its morphological fractions. Asian Austr J Anim Sci, 2014, 27: 194-200.
[44] Zhang B C, Deng L W, Qian Q, Xiong G Y, Zeng D, Li R, Guo L B, Li J Y, Zhou Y H. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol, 2009, 71: 509-524.
doi: 10.1007/s11103-009-9536-4 pmid: 19697141
[45] Vega-Sánchez M E, Verhertbruggen Y, Christensen U, Chen X, Sharma V, Varanasi P, Jobling S A, Talbot M, White R G, Joo M. Loss of cellulose synthase-like f6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiol, 2012, 159: 56-69.
doi: 10.1104/pp.112.195495 pmid: 22388489
[1] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
[2] DAI Wen-Hui, ZHU Qi, ZHANG Xiao-Fang, LYU Shen-Yang, XIANG Xian-Bo, MA Tao, CHEN Yu-Jie, ZHU Shi-Hua, DING Wo-Na. Identification and gene mapping of brittle culm mutant bc21 in rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1426-1431.
[3] YANG Ye, SUN Qi, XING Xin-Xin, ZHANG Hai-Tao, ZHAO Zhi-Chao, CHENG Zhi-Jun. Identification of sheathed panicle mutant sui1-5 and screening of OsPSS1 interaction protein in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 597-607.
[4] MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661.
[5] XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96.
[6] GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634.
[7] YANG Xin, LI Yu, LIU Chuan-Bing, ZHANG Li-Lan, HE Qin-Yao, QI Jian-Min, ZHANG Li-Wu. Reference genes screening for expression analysis of secondary cell wall synthesis related genes in jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2022, 48(7): 1614-1624.
[8] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[9] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[10] GUO Bao-Jian, WANG Shuang, LYU Chao, WANG Fei-Fei, XU Ru-Gen. Regulation of adventitious root development by HvLBD19 gene in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2435-2442.
[11] YU Xin-Lian, LI Xin, YAO Xiao-Hua, YAO You-Hua, BAI Yi-Xiong, AN Li-Kun, WU Kun-Lun. Genetic mapping and candidate gene analysis of the major QTL cqHD2H-2 for early heading in barley (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2022, 48(10): 2463-2474.
[12] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[13] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[14] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[15] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .