Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 662-671.doi: 10.3724/SP.J.1006.2023.22012

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Heredity and fine mapping of an early-senescence leaf gene ESL8 in rice

ZHU Xiao-Tong1,2(), YE Ya-Feng2, GUO Jun-Yao2, YANG Hui-Jie2, WANG Zi-Yao1, ZHAN Yue2, WU Yue-Jin2, TAO Liang-Zhi2, MA Bo-Jun1, CHEN Xi-Feng1,*(), LIU Bin-Mei2,*()   

  1. 1College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    2Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, Anhui, China
  • Received:2022-03-03 Accepted:2022-07-21 Online:2023-03-12 Published:2022-08-19
  • Contact: CHEN Xi-Feng,LIU Bin-Mei E-mail:1634453295@qq.com;xfchen@zjnu.cn;liubm@ipp.ac.cn
  • Supported by:
    Natural Science Foundation of Anhui Province(2108085MC99);Hefei Science and Technology Project(J2020G45);Anhui Science Technology Major Project(202003c08020006);Natural Science Foundation of Zhejiang Province(LD19C130001)

Abstract:

Early-senescence mutants are genetic materials important for the researches on the molecular mechanism of cell apoptosis in plants. An early-senescence mutant named esl8 (early senescence leaf 8) has been screened from the mutagenesis library of rice variety Kefujing 7. Compared with the wild-type control, the leaves of the esl8 mutant displays a severe of early-senescence phenotype at heading stage in rice, and its agronomic traits, including plant height, tiller number, grain length, grains per panicle, and seed setting rate, were obviously impaired except for the 1000-grain weight. In leaves of the esl8 mutant, the chlorophyll content was abnormally decreased, and the programmed cell death accompanied by excessive accumulation of the reactive oxygen species and the malondialdehyde were detected by histochemical staining. Genetic analysis indicated that the early-senescence phenotype of the esl8 mutant was controlled by a recessive nuclear gene. Based on the strategy of map-based cloning, the esl8 gene was finely mapped into a 359-kb region flanking by two molecular markers (FM12-14 and FM12-15) on chromosome 12. The prediction and verification of candidate genes by PCR sequencing confirmed that esl8 was a new variational allele of the OsSL/ELL1 gene. The sequence of mutation esl8 occurred in the conserved region of the corresponding wild-type gene. Our results provide a theoretical basis for further study on the biofunction and molecular mechanism of the protein encoding by ESL8 in early-senescence process.

Key words: early senescence, rice, esl8, cell apoptosis, mapping and cloning

Table 1

Primers sequences of molecular markers used in fine mapping of rice ESl8 gene"

分子标记
Molecular marker
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
LSR6 TCTTGCCTCGCTAGGGTTAG CCCACGTTTCTCTTGTCCTC
LSR14 TCCACCACTCTGACGTCTACTAACC CTGCGGGAAGTGTAGGAGAAGC
FM12-1 CCCAGTTTTGCTTAGCCTCTT TTTTGGCATACATCGATTGG
FM12-3 GCCATTTTTAGACGTGGCAAT TTTGCCACTTTTAGTTTTATCGTTT
FM12-7 GGCTGTTGACCATGCTGTAA TGAAGTCCTAGATGCACTTTTTCA
FM12-9 ACATCAGCAGCCATGGTTTT TTTCAACGGTAAAGTCATGTGG
FM12-11 ACATTATGGTTCACGCATGG CGGGACCGTAGGTAAAAAGG
FM12-14 GCCGATGAAACTCCGATAGC TTATCGTGTGAGGGGGAAAG
FM12-15 ACATCCGCGCTTTTCTTTT TAACAAGGGGCAAAGTGGTC

Table 2

Primer sequences for PCR amplification of rice ESL8 gene"

引物名称
Primer name
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
ESL8-1 TCTTGCCTCGCTAGGGTTAG CCCACGTTTCTCTTGTCCTC
ESL8-2 TCCACCACTCTGACGTCTACTAACC CTGCGGGAAGTGTAGGAGAAGC
ESL8-3 CCCAGTTTTGCTTAGCCTCTT TTTTGGCATACATCGATTGG
ESL8-4 GCCATTTTTAGACGTGGCAAT TTTGCCACTTTTAGTTTTATCGTTT

Fig. 1

Early-senescence phenotype and physicochemical characteristics of rice esl8 mutant A: plant phenotype at seedling stage; B: plant phenotype at heading stage; C: single tiller phenotype at heading stage; D: Trypan blue staining; E: DAB staining; F: NBT staining; G: the measurement of SOD enzyme activity; H: the measurement of MDA content; I: the measurement of chlorophyll content. WT refers to the wide-type control Kefujing 7, and esl8 refers to the early-senescence mutant esl8. Bar: 10 cm; ** represents the significance between the mutant and wild-type control at P < 0.01."

Table 3

Agronomic traits of rice esl8 mutant and the wild-type control"

材料名称
Material name
株高
Plant height
(cm)
穂长
Panicle length (cm)
有效分蘖数
Effective
panicle number
每穗粒数
Grain number
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
WT 101.18±2.93 14.87±0.86 9.00±1.15 206.00±18.00 81.27±2.18 26.74±0.41
esl8 89.88±1.03** 13.69±0.56** 7.00±0.58** 129.00±10.00** 58.45±2.33** 25.98±0.33

Fig. 2

Fine mapping and sequencing of rice ESL8 gene A: the physical map of the ESL8 gene by preliminary mapping; B: the genetic map of the ESL8 gene by fine mapping; ‘n’ refers to the number of F2 mutants used for mapping; the number under each marker represents the recombinant number detected by the corresponding marker. C: the sequencing results of ESL8 gene in the mutation site. WT refers to the wild-type control Kefujing 7 and ESL8 refers to the early-senescence mutant. The red box indicates the location of ‘TGCCCC’ deletion and ‘GCG’ insertion."

Fig. 3

Sequence alignment and phylogenetic tree of ESL8 proteins A: the sequence alignment of the proteins coding by the esl8 and its wild-type gene; B: phylogenetic tree of ESL8 and its homologous proteins in Arabidopsis and rice; C: the comparison of conserved sequences of ESL8 and its homologous proteins."

[1] 李可, 禹晴, 徐云姬, 杨建昌. 水稻叶片早衰突变体的农艺与生理性状研究进展. 中国水稻科学, 2020, 34: 104-114.
doi: 10.16819/j.1001-7216.2020.9078
Li K, Yu Q, Xu Y J, Yang J C. Research progress in agronomic and physiological traits of early senescence mutant in rice. Chin J Rice Sci, 2020, 34: 104-114. (in Chinese with English abstract)
[2] 刘林, 张迎信, 刘群恩, 李枝, 曹立勇. 植物类病变突变体及其信号传导途径. 核农学报, 2014, 10: 1811-1818.
Liu L, Zhang Y X, Liu Q E, Li Z, Cao L Y. Plant lesion mimic mutants and their signaling pathways. Acta Agric Nucl Sin, 2014, 10: 1811-1818. (in Chinese with English abstract)
[3] 马梓铭, 白慧娇, 金永梅, 吴涛, 朴日花, 马艳, 姜文洙, 都兴林. 水稻早衰突变体es-h的鉴定、遗传分析与基因定位. 分子植物育种, 2021, 19: 4550-4556.
Ma Z M, Bai H J, Jin Y M, Wu T, Piao R H, Ma Y, Jiang W Z, Du X L. Identification, genetic analysis and gene mapping of early senescence mutant es-h in rice. Mol Plant Breed, 2021, 19: 4550-4556. (in Chinese with English abstract)
[4] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位. 作物学报, 2022, 48: 1389-1400.
doi: 10.3724/SP.J.1006.2022.12035
Zheng C K, Zhou G H, Niu S L, He Y N, Sun W, Xie X Z. Phenotypic characterization and gene mapping of an early senescence leaf H5 (esl-H5) mutant in rice (Oryza sativa L.). Acta Agron Sin, 2022, 48: 1389-1400 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.12035
[5] 肖艳华, 陈新龙, 杜丹, 邢亚迪, 张天泉, 祝毛迪, 刘明明, 朱小燕, 桑贤春, 何光华. 水稻叶片淀粉积累及早衰突变体esl9的鉴定与基因定位. 作物学报, 2017, 43: 473-482.
doi: 0.3724/SP.J.1006.2017.00473
Xiao Y H, Chen X L, Du D, Xing Y D, Zhang T Q, Zhu M D, Liu M M, Zhu X Y, Sang X C, He G H. Identification and gene mapping of starch accumulation and early senescence leaf mutant esl9 in rice. Acta Agron Sin, 2017, 43: 473-482. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00473
[6] 刘思辰, 曹晓宁, 王海岗, 王君杰, 陈凌, 田翔, 秦慧彬, 乔治军. 植物类病变突变体的研究进展. 山西农业科学, 2020, 48: 272-276.
Liu S C, Cao X Y, Wang H L, Wang J J, Chen L, Tian X, Qin H B, Qiao Z J. Research progress of plant lesion mimic mutants. J Shanxi Agric Sci, 2020, 48: 272-276. (in Chinese with English abstract)
[7] Ma J, Wang Y F, Ma X D, Meng L Z, Jing R N, Wang F, Wang S, Cheng Z J, Zhang X, Zhang L, Wang J L, Wang J, Zhao Z C, Guo X P, Lin Q B, Wu F Q, Zhu S S, Wu C Y, Ren Y L, Lei C L, Zhai H Q, Wan J M. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice. Plant Biotechnol J, 2019, 17: 1679-1693.
doi: 10.1111/pbi.13093
[8] Shirsekar G S, Vega-Sanchez M E, Bordeos A, Baraodan M, Swisshelm A, Fan J B, Park C H, Leung H, Wang G L. Identification and characterization of suppressor mutants of spl11-mediated cell death in rice. Mol Plant-Microbe Interact, 2014, 27: 528-536.
[9] Wu C, Bordeos A, Madamba M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genom, 2008, 279: 605-619.
doi: 10.1007/s00438-008-0337-2
[10] Wang J C, Liu X, Zhang A, Ren Y L, Wu F Q, Wang G, Xu Y, Lei C L, Zhu S S, Pan T, Wang Y F, Zhang H, Wang F, Tan Y Q, Wang Y P, Jin X, Luo S, Zhou C L, Zhang X, Liu J L, Wang S, Meng L Z, Wang Y H, Chen X, Lin Q B, Zhang X, Guo X P, Cheng Z J, Wang J L, Tian Y L, Liu S J, Jiang L, Wu C Y, Wang E Y, Zhou J M, Wang Y F, Wang H Y, Wan J M. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 2019, 29: 1-12.
[11] Ma H G, Li J, Ma L, Wang P L, Xue Y, Yin P, Xiao J H, Wang S P. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. Mol Plant, 2021, 14: 620-632.
doi: 10.1016/j.molp.2021.01.008
[12] Zhu M D, Chen X L, Zhu X Y, Xing Y D, Du D, Zhang Y Y, Liu M M, Zhang Q L, Lu X, Peng S S, He G H, Zhang T Q. Identification and gene mapping of the starch accumulation and premature leaf senescence mutant ossac4 in rice. J Integr Agric, 2020, 19: 2150-2164.
doi: 10.1016/S2095-3119(19)62814-5
[13] Sun C H, Liu L C, Tang J Y, Lin A H, Zhang F T, Fang J, Zhang G F, Chu C C. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011, 38: 29-37.
doi: 10.1016/j.jcg.2010.12.001 pmid: 21338950
[14] Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122-133.
doi: 10.1111/tpj.12110
[15] Song G H, Kwon C T, Kim S H, Shim Y J, Lim C Y, Koh H J, An G H, Kang K Y, Paek N C. The rice SPOTTED LEAF4 (SPL4) encodes a plant spastin that inhibits ROS accumulation in leaf development and functions in leaf senescence. Front Plant Sci, 2019, 9: 1925.
doi: 10.3389/fpls.2018.01925
[16] Qiao Y L, Jiang W Z, Lee J H, Park B S, Choi M S, Piao R, Woo M O, Roh J H, Han L Z, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258-274.
doi: 10.1111/j.1469-8137.2009.03047.x
[17] Cui Y J, Peng Y L, Zhang Q, Xia S S, Ruan B P, Xu Q K, Yu X Q, Zhou T T, Liu H, Zeng D L, Zhang G H, Gao Z Y, Hu J, Zhu L, Shen L, Guo L B, Qian Q, Ren D Y. Disruption of EARLY LESIONLEAF1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. Plant J, 2021, 105: 942-956.
doi: 10.1111/tpj.15079
[18] Fujiwara T F, Maisonneuve S M, Isshiki M, Mizutani M, Chen L, Wang H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 285: 11308-11313.
doi: 10.1074/jbc.M109.091371 pmid: 20150424
[19] Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Yang J, Gu Z M, Qian Q, Zhai W X, Ma B J. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939-949.
doi: 10.1007/s11032-011-9677-4
[20] Wang L J, Pei Z Y, Tian Y C, He C Z. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant-Microbe Interact, 2005, 18: 375-384.
doi: 10.1094/MPMI-18-0375
[21] 刘林, 张迎信, 李枝, 刘群恩, 余宁, 孙滨, 杨正福, 周全, 程式华, 曹立勇. 水稻类病变突变体g303的鉴定和基因定位. 中国水稻科学, 2014, 28: 465-472.
Liu L, Zhang Y X, Li Z, Liu Q E, Yu N, Sun B, Yang Z F, Zhou Q, Cheng S H, Cao L Y. Characterization and gene mapping of a lesion mimic mutant g303 in rice. Chin J Rice Sci, 2014, 28: 465-472. (in Chinese with English abstract)
[22] Christensen T H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants. H2O2accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J, 1997, 11: 1187-1194.
doi: 10.1046/j.1365-313X.1997.11061187.x
[23] Kumar D, Yusuf M A, Singh P, Sardar M, Sarin N B. Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-Protocol, 2014, 4: e1108.
[24] Porra R J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosyn Res, 2002, 73:149-156.
doi: 10.1023/A:1020470224740
[25] 谢宇, 任金波, 黄煌辉, 张翔. 基于卡方检验的计算流体动力学网络无关性分析. 科学技术与工程, 2020, 20: 123-127.
Xie Y, Ren J B, Huang H H, Zhang X. Grid independence analysis of computational fluid dynamics based on Chi-square test. Sci Tech Eng, 2020, 20: 123-127. (in Chinese with English abstract)
[26] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4326.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[27] 杨波, 夏敏, 张孝波, 王晓雯, 朱小燕, 何沛龙, 何光华, 桑贤春. 水稻早衰突变体esl6的鉴定与基因定位. 作物学报, 2016, 42: 976-983.
doi: 10.3724/SP.J.1006.2016.00976
Yang B, Xia M, Zhang X B, Wang X W, Zhu X Y, He P L, He G H, Sang X C. Identification and gene mapping of an early senescent leaf mutant esl6 in Oryza sativa L. Acta Agron Sin, 2016, 42: 976-983. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00976
[28] 黄雅敏, 朱杉杉, 赵志超, 蒲志刚, 刘天珍, 罗胜, 张欣. 水稻早衰突变体psls1的基因定位及克隆. 作物学报, 2017, 43: 51-62.
doi: 10.3724/SP.J.1006.2017.00051
Huang Y M, Zhu S S, Zhao Z Q, Pu Z G, Liu T Z, Luo S, Zhang X. Gene mapping and cloning of a premature leaf senescence mutant psls1 in rice. Acta Agron Sin, 2017, 43: 1-62. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00001
[29] Yang X, Gong P, Li K Y, Huang F D, Cheng F M, Pan G. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice. J Exp Bot, 2016, 67: 2761-2776.
doi: 10.1093/jxb/erw109 pmid: 26994476
[30] Lin F F, Letuma P L, Li Z W, Lin S, Christopher R S, Lin W X. Rhizospheric pathogen proliferation and ROS production are associated with premature senescence of the osvha-a1 rice mutant. J Exp Bot, 2021, 72: 7247-7263.
doi: 10.1093/jxb/erab338
[31] Zhang W, Peng K X, Cui F B, Wang D L, Zhao J Z, Zhang Y J, Yu N N, Wang Y Y, Zeng D L, Wang Y H, Cheng Z K, Zhang K W. Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant Biotechnol J, 2021, 19: 335-350.
doi: 10.1111/pbi.13467 pmid: 33448635
[32] Wang J, Liu X, Zhang A, Ren Y, Wu F, Wang G, Xu Y, Lei C, Zhu S, Pan T, Wang Y, Zhang H, Wang F, Tan Y, Wang Y, Jin X, Luo S, Zhou C, Zhang X, Liu J, Wang S, Meng L, Wang Y, Chen X, Lin Q, Zhang X, Guo X, Cheng Z, Wang J, Tian Y, Liu S, Jiang L, Wu C, Wang E, Zhou J, Wang Y, Wang H, Wan J. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 2019, 29: 820-831.
doi: 10.1038/s41422-019-0219-7 pmid: 31444468
[33] Chen D D, Qiu Z N, He L, Hou L L, Li M, Zhang G H, Wang X Q, Chen G, Hu J, Gao Z Y, Dong G J, Ren D Y, Lan S, Zhang Q, Guo L B, Qian Q, Zeng D L, Zhu L. The rice LRR-like1 protein YELLOW AND PREMATURE DWARF 1 is involved in leaf senescence induced by high light. J Exp Bot, 2021, 72: 1589-1605.
doi: 10.1093/jxb/eraa532 pmid: 33200773
[34] Lin Y H, Tan L B, Zhao L, Sun X Y, Sun C Q. RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice. J Integr Plant Biol, 2016, 58: 971-982.
doi: 10.1111/jipb.12487
[1] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[2] TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of   bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121.
[3] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[4] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[5] LIU Li-Jun, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang. Research progress on the formation of large panicles in rice and its regulation [J]. Acta Agronomica Sinica, 2023, 49(3): 585-596.
[6] WU Dong-Qing, LI Zhou, GUO Chun-Lin, ZOU Jing-Nan, PANG Zi-Qin, LIN Fei-Fan, HE Hai-Bin, LIN Wen-Xiong. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time [J]. Acta Agronomica Sinica, 2023, 49(3): 755-771.
[7] FU Jing, WANG Ya, YANG Wen-Bo, WANG Yue-Tao, LI Ben-Yin, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 808-820.
[8] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[9] CAI Xiao-Xi, HU Bing-Shuang, SHEN Yang, WANG Yan, CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, SUN Xiao-Li. Effects of GsERF6 overexpression on salt-alkaline tolerance in rice [J]. Acta Agronomica Sinica, 2023, 49(2): 561-569.
[10] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[11] CHEN Sai-Hua, PENG Sheng, YOU Yi-Wen, ZHANG Lu-Yao, WANG Kai, XUE Ming, YANG Yuan-Zhu, WAN Jian-Min. Genetic analysis of photosensitivity divergence among hybrids derived from rice sterile line Xiangling 628S [J]. Acta Agronomica Sinica, 2023, 49(2): 332-342.
[12] YANG Xiao-Yi, WANG Hui-Hui, ZHANG Yan-Wen, HOU Dian-Yun, ZHANG Hong-Xiao, KANG Guo-Zhang, XU Hua-Wei. Function analysis of OsPIN5c gene by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2023, 49(2): 354-364.
[13] LI Zhao-Wei, MO Zu-Yi, SUN Cong-Ying, SHI Yu, SHANG Ping, LIN Wei-Wei, FAN Kai, LIN Wen-Xiong. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress [J]. Acta Agronomica Sinica, 2023, 49(2): 365-376.
[14] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[15] XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .