Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1222-1230.doi: 10.3724/SP.J.1006.2023.24140

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and employment of InDel marker in peanut QTL mapping of oil content

TAO Shun-Yu(), WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang()   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2022-06-10 Accepted:2022-07-21 Online:2023-05-12 Published:2022-09-23
  • Contact: *E-mail: peanutlab@oilcrops.cn
  • Supported by:
    Key Area Research and Development Program of Guangdong Province(2020B020219003);National Natural Science Foundation of China(31801403);National Natural Science Foundation of China(31871666);Crop Germplasm Resources Protection Project(2017NWB033);Plant Germplasm Resources Sharing Platform(NICGR2017-36);China Agriculture Research System of MOF and MARA(CARS13);Innovation Project of Chinese Academy of Agricultural Sciences(2022-2060299-089-031)

Abstract:

The developing of stable and efficient molecular markers is of great value for marker-assisted selection of peanut varieties with high oil content. In this study, two parents with significant differences in oil content, Xuhua 13 (high oil content) and Zhonghua 6 (low oil content), were used to detect genomic structural variation by PacBio third-generation sequencing technology, and 35,794 and 74,703 structural variations were detected in Xuhua 13 and Zhonghua 6, respectively. 84 InDel markers in the target region were detected based on the parents’ structural variations and the previous QTL mapping information. And 9 InDel markers were found to be polymorphic between the parents. Meanwhile, F2 population with 1160 individual plants was constructed based on near isogenic lines (NILs) derived from heterozygous residuals in the recombined inbred line (RIL) population. The polymorphic markers were used to genotype the population and to construct the genetic linkage map with 149.84 cM. Combining with phenotype data of population for oil content, QTL (qOCA08) was fine mapped between marker M23 and marker M11, which was located on 1.2 Mb interval of chromosome A08. This study demonstrated the feasibility of InDel marker for peanut QTL mapping. The locus of oil content and closely linked InDel markers can provide the theoretical and technical guidance for peanut molecular marker-assisted breeding.

Key words: peanut, genome resequencing, InDel, oil content

Table 1

Sequencing information of parents"

样品
Sample name
碱基数目
Base number
Reads数
Clean reads
比对率
Mapping rate (%)
覆盖度
Coverage
(%)
结构变异
Structural variation
插入
Insertion
缺失
Deletion
徐花13 Xuhua 13 81,826,464,736 5,615,798 98.03 96.91 35,794 12,293 4496
中花6号 Zhonghua 6 68,494,830,848 4,225,186 97.58 96.59 74,703 26,833 12,906

Fig. 1

Length distribution of insertion and deletion variations in two parents A: length distribution of insertion variation in Xuhua 13; B: length distribution of deletion variation in Xuhua 13; C: length distribution of insertion variation in Zhonghua 6; D: length distribution of deletion variation in Zhonghua 6."

Fig. 2

Ratio of different genomic region with structural variations A: the ratio of different genomic region with structural variations in Xuhua 13; B: the ratio of different genomic region with structural variations in Zhonghua 6."

Fig. 3

Polymorphic PCR amplication of nine InDel markers between two parents M1: 2000 bp; M2: 5000 bp. M9: InDel-A08-37791529; M21: InDel-A08-42578036; M6: InDel-A08-44213248; M22: InDel-A08-44339712; M23: InDel-A08-44988232; M11: InDel-A08-46212241; M13: InDel-A08-46400655; M14: InDel-A08-46555343; M8: InDel-A08- 49660135."

Table 2

Information of InDel marker primer"

引物名称
Primer name
引物序列
Primer sequences (5'-3')
引物位置(A08)
Physical position (A08) (bp)
差异大小
Difference in size (bp)
M9-F AGTATTGAAGCGGCAGGAGG 37,791,529 18
M9-R TTGCACTTCGATGTGGAGGAT
M21-F TAGTTCTCTCCGGATGCCTCA 42,578,036 26
M21-R TGCCATGAAATTACTCATTACTCTT
M6-F CAGAGAGACAGAGAGCGAGC 44,213,248 466
M6-R TGAGCCGGATGAGTAAGACA
M22-F AATAAGTTTGTTGGGAGAATGAAAT 44,339,712 24
M22-R GCTCCCATTGTCTAGCGAAAAC
M23-F TGCTGTGTGTAATAGTTAGAGGCT 44,988,232 28
M23-R TGGGGTGAGTGAATTATACGTGA
M11-F TGTGAGTACCGACATACACTCA 46,212,241 154
M11-R AATTTGATTATTGGACATCCCCT
M13-F GTTGAGACCGGAACACAGGA 46,400,655 362
M13-R CTATCCACTAGGTTCTCCAGCA
M14-F TGTCAATGTGTTATCATCTCAATTT 46,555,343 2353
M14-R TAATTGGCACCACGCAATGTC
M8-F CCAAGTCCTTTGCAGCTCTC 49,660,135 15
M8-R AAATTACTTTCAGTAAATGTCTAGC

Fig. 4

Frequency distribution of oil content in F2 population"

Fig. 5

QTL mapping for oil content in F2 population"

Fig. 6

Genotypic effects of oil content of alleles at M11 locus ** represents significant difference at the 0.01 probability level by t-test."

[1] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166. (in Chinese with English abstract)
[2] 张婧妤, 许本波, 郑家喜. 我国食用植物油消费变化分析及改革对策. 中国油脂, 2022, 47(3): 5-10.
Zhang J Y, Xu B B, Zheng J X. Analysis on consumption changes and reform countermeasures of edible vegetable oil in China. Chin Oils Fats, 2022, 47(3): 5-10 (in Chinese with English abstract).
[3] 姜慧芳, 任小平. 我国栽培种花生资源农艺和品质性状的遗传多样性. 中国油料作物学报, 2006, 28: 421-426.
Jiang H F, Ren X P. Genetic diversity of agronomic and quality traits in cultivated peanut resources in China. Chin J Oil Crop Sci, 2006, 28: 421-426. (in Chinese with English abstract)
[4] Yol E, Ustun R, Golukcu M, Uzun B. Oil content, oil yield and fatty acid profile of groundnut germplasm in Mediterranean climates. J Am Oil Chem Soc, 2017, 94: 787-804.
doi: 10.1007/s11746-017-2981-3
[5] 郭建斌, 吴贝, 陈伟刚, 贾朝阳, 荆建国, 陈四龙, 刘念, 陈玉宁, 周小静, 罗怀勇, 任小平, 姜慧芳, 黄莉. 基于核磁共振法的花生品种含油量遗传变异分析. 中国油料作物学报, 2017, 39: 326-333.
Guo J B, Wu B, Chen W G, Jia C Y, Jing J G, Chen S L, Liu N, Chen Y N, Zhou X J, Luo H Y, Ren X P, Jiang H F, Huang L. Variation of oil content in peanut varieties based on nuclear magnetic resonance technology. Chin J Oil Crop Sci, 2017, 39: 326-333. (in Chinese with English abstract)
[6] Bertioli D J, Cannon S B, Froenicke L, Huang G D, Farmer A D, Cannon E K S, Liu X, Gao D Y, Clevenger J, Dash S, Ren L H, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C G, Kozik A, Kim K D, Burow M D, Varshney R K, Wang X J, Zhang X Y, Barkley N, Guimarães P M, Isobe S, Guo B Z, Liao B S, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C M, Xun X, Jackson S A, Michelmore R, Ozias-Akins P. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016, 48: 438-446.
doi: 10.1038/ng.3517 pmid: 26901068
[7] Shasidhar Y, Vishwakarma M K, Pandey M K, Janila P, Variath M T, Manohar S S, Nigam S N, Guo B Z, Varshney R K. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci, 2017, 8: 794-807.
doi: 10.3389/fpls.2017.00794 pmid: 28588591
[8] Wilson J N, Chopra R, Baring M R, Selvaraj M G, Simpson C E, Chagoya J, Burow M D. Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L.). Trop Plant Biol, 2017, 10: 512.
[9] Guo J B, Liu N, Li W T, Wu B, Chen H W, Huang L, Chen W G, Luo H Y, Zhou X J, Jiang H F. Identification of two major loci and linked marker for oil content in peanut (Arachis hypogaea L.). Euphytica, 2021, 217: 29.
doi: 10.1007/s10681-021-02765-4
[10] Väli U, Brandström M, Johansson M, Ellegren H. Insertion- deletion polymorphisms (indels) as genetic markers in natural populations. BMC Genet, 2008, 9: 8.
doi: 10.1186/1471-2156-9-8 pmid: 18211670
[11] Li X M, Gao W H, Guo H L, Zhang X L, Fang D D, Lin Z X. Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping. BMC Genom, 2014, 15: 1046.
doi: 10.1186/1471-2164-15-1046
[12] Weber J L, David D, Heil J, Fan Y, Zhao C F, Marth G. Human diallelic insertion/deletion polymorphisms science direct. Am J Hum Genet, 2002, 71: 854-862.
doi: 10.1086/342727 pmid: 12205564
[13] Liu J, Qu J T, Yang C, Tang D G, Li J W, Lan H, Rong T Z. Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data. BMC Genomics, 2015, 16: 601.
doi: 10.1186/s12864-015-1797-5 pmid: 26269146
[14] 刘栓桃, 张志刚, 司立英, 王荣花, 李巧云, 王立华, 赵智中, 梁水美, 张全芳, 步迅. 基于InDels标记的大白菜育种材料的亲缘关系鉴定. 植物遗传资源学报, 2018, 19: 657-667.
Liu S T, Zhang Z G, Si L Y, Wang R H, Li Q Y, Wang L H, Zhao Z Z, Liang S M, Zhang Q F, Bu X. Identification of genetic relationships of Chinese cabbage inbred lines using InDels markers. J Plant Genet Res, 2018, 19: 657-667 (in Chinese with English abstract).
[15] 孟雅宁, 严立斌, 田玉, 范妍芹. 利用重测序InDel位点开发甜椒隐性核不育分子标记. 分子植物育种, 2019, 17: 6041-6046.
Meng Y N, Yan L B, Tian Y, Fan Y Q. Development of recessive genic male sterile molecular markers in sweet pepper using resequencing InDel sites. Mol Plant Breed, 2019, 17: 6041-6046. (in Chinese with English abstract)
[16] 季高翔, 何守朴, 潘兆娥, 龚文芳, 贾银华, 王立如, 王朋朋, 耿晓丽, 杜雄明. 基于重测序开发的InDel标记定位陆地棉矮化突变体. 棉花学报, 2018, 30: 448-454.
Ji G X, He S P, Pan Z E, Gong W F, Jia Y H, Wang L R, Wang P P, Geng X L, Du X M. Localization of a dwarfing mutation in upland cotton using InDel markers based on genome re-sequencing data. Cotton Sci, 2018, 30: 448-454 (in Chinese with English abstract).
[17] Liu L F, Dang P M, Chen C Y. Development and utilization of InDel markers to identify peanut (Arachis hypogaea L.) disease resistance. Front Plant Sci, 2015, 6: 988-998.
[18] Meng S, Yang X L, Dang P M, Cui S L, Mu G J, Chen C, Liu L F. Evaluation of insertion-deletion markers suitable for genetic diversity studies and marker-trait correlation analyses in cultivated peanut (Arachis hypogaea L.). Genet Mol Res, 2016, 15: gmr.15038207.
[19] 郭建斌. 花生含油量及脂肪酸组成的QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Guo J B. QTL Analysis for Oil Content and Fatty Acid Traits in Peanut (Arachis hypogaea L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[20] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[21] Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M. Arabidopsis map-based cloning in the post-genome era. Plant Physiol, 2002, 129: 440-450.
doi: 10.1104/pp.003533 pmid: 12068090
[22] Mithra S V A, Kar M K, Mohapatra T, Robin S, Sarla N, Seshashayee M, Singh K, Singh A K, Singh N K, Sharma R P. DBT propelled national effort in creating mutant resource for functional genomics in rice. Curr Sci, 2016, 110: 543-548.
doi: 10.18520/cs/v110/i4/543-548
[23] 刘阳杰, 何美敬, 崔顺立, 杨鑫雷, 穆国俊, Chen C Y, 刘立峰. 美国花生种质资源果腐病抗性分子标记的筛选及分析. 农业生物技术学报, 2019, 27: 743-751.
Liu Y J, He M J, Cui S L, Yang X L, Mu G J, Chen C Y, Liu L F. Screening and analysis of molecular markers for pod rot resistance in American peanut (Arachis hypogaea L.) germplasm resources. Chin J Agric Biotechol, 2019, 27: 743-751. (in Chinese with English abstract)
[24] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发. 作物学报, 2021, 47: 2163-2172.
doi: 10.3724/SP.J.1006.2021.04236
Guo Q Q, Zhou R, Chen X, Chen L, Li J N, Wang R. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing. Acta Agron Sin, 2021, 47: 2163-2172. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04236
[25] 张胜忠, 焦坤, 胡晓辉, 苗华荣, 陈静. 花生百仁质量和含油量的遗传分析. 花生学报, 2018, 47(4): 7-12.
Zhang S Z, Jiao K, Hu X H, Miao H R, Chen J. Genetic analysis for seed mass and oil content of peanuts. J Peanut Sci, 2018, 47(4): 7-12. (in Chinese with English abstract)
[26] 黄莉, 赵新燕, 张文华, 樊志明, 任小平, 廖伯寿, 姜慧芳, 陈玉宁. 利用RIL群体和自然群体检测与花生含油量相关的SSR标记. 作物学报, 2011, 37: 1967-1974.
doi: 10.3724/SP.J.1006.2011.01967
Huang L, Zhao X Y, Zhang W H, Fan Z M, Ren X P, Liao B S, Jiang H F, Chen Y N. Identification of SSR markers linked to oil content in peanut (Arachis hypogaea L.) through RIL population and natural population. Acta Agron Sin, 2011, 37: 967-1974. (in Chinese with English abstract)
[27] Liu N, Huang L, Chen W G, Wu B, Pandey M K, Luo H Y, Zhou X J, Guo J B, Chen H W, Huai D X, Chen Y N, Lei Y, Liao B S, Ren X P, Varshney R K, Jiang H F. Dissection of the genetic basis of oil content in Chinese peanut cultivars through association mapping. BMC Genet, 2020, 21: 60.
doi: 10.1186/s12863-020-00863-1 pmid: 32513099
[28] 徐平, 尹亮, 石延茂, 任艳, 王效华, 李双铃, 袁美. 一个与花生含油量相关的InDel标记的开发. 花生学报, 2017, 46(4): 1-6.
Xu P, Yin L, Shi Y M, Ren Y, Wang X H, Li S L, Yuan M. Identifying of InDel marker associated with oil content in peanut. J Peanut Sci, 2017, 46(4): 1-6. (in Chinese with English abstract)
[29] Liu N, Guo J B, Zhou X J, Wu B, Huang L, Luo H Y, Chen Y N, Chen W G, Lei Y, Huang Y, Liao B S, Jiang H F. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a -0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor App Genet, 2020, 133: 37-49.
doi: 10.1007/s00122-019-03438-6
[1] YAN Xin, XIANG Chao, LIU Rong, LI Guan, LI Meng-Wei, LI Zheng-Li, ZONG Xu-Xiao, YANG Tao. Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique [J]. Acta Agronomica Sinica, 2023, 49(4): 1006-1015.
[2] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[3] JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876.
[4] LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471.
[5] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
[6] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[7] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[8] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[9] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
[10] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[11] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[12] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[13] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[14] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[15] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .