Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (12): 3224-3237.doi: 10.3724/SP.J.1006.2025.54063
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
ZHANG Hui-Min,DANG Ya-Ru,SANG Jia-Nan,JIAO Wen-Jing,SUN Chun-Yi,ZHUANG Jia-Mu,WEI Yu-Shu,ZHANG Chao,TIAN Peng,LIU Bai-Lin,SONG Yin*
| [1] Matsubayashi Y. Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol, 2014, 65: 385–413. [2] Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue B P A. The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell, 2015, 27: 2095–2118. [3] Olsson V, Joos L, Zhu S S, Gevaert K, Butenko M A, De Smet I. Look closely, the beautiful may be small: precursor-derived peptides in plants. Annu Rev Plant Biol, 2019, 70: 153–186. [4] Hou S G, Liu D R, He P. Phytocytokines function as immunological modulators of plant immunity. Stress Biol, 2021, 1: 8. [5] 吕倩雯, 杨永芳. 植物小肽信号生物学功能及其在作物改良中研究进展. 遗传, 2023, 45: 813–828. Lyu Q W, Yang Y F. The biological functions of peptide signaling in plant and the advances on its utilization for crop improvement. Hereditas (Beijing), 2023, 45: 813–828 (in Chinese with English abstract). [6] Tan W Y, Nian H, Tran L P, Jin J, Lian T X. Small peptides: novel targets for modulating plant-rhizosphere microbe interactions. Trends Microbiol, 2024, 32: 1072–1083. [7] Zhang Y W, Duan X L, Xie Y M, Xuan W. Uncovering the function of peptides: bridging hormone signaling, microbial interactions, and root development in plants. New Crops, 2024, 1: 100011. [8] Ji C, Li H, Zhang Z L, Peng S Y, Liu J P, Zhou Y, Yang Y X, Han H B. The power of small signaling peptides in crop and horticultural plants. Crop J, 2025, 13: 656–667. [9] Xiao F, Zhou H P, Lin H H. Decoding small peptides: regulators of plant growth and stress resilience. J Integr Plant Biol, 2025, 67: 596–631. [10] Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, et al. Peptide hormones in plants. Mol Hortic, 2025, 5: 7. [11] Ohyama K, Ogawa M, Matsubayashi Y. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J, 2008, 55: 152–160. [12] Delay C, Imin N, Djordjevic M A. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. J Exp Bot, 2013, 64: 5383–5394. [13] Roberts I, Smith S, De Rybel B, Van Den Broeke J, Smet W, De Cokere S, Mispelaere M, De Smet I, Beeckman T. The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development. J Exp Bot, 2013, 64: 5371–5381. [14] Sui Z P, Wang T Y, Li H J, Zhang M, Li Y Y, Xu R B, Xing G F, Ni Z F, Xin M M. Overexpression of peptide-encoding OsCEP6.1 results in pleiotropic effects on growth in rice (O. sativa). Front Plant Sci, 2016, 7: 228. [15] de Bang T C, Lundquist P K, Dai X B, Boschiero C, Zhuang Z H, Pant P, Torres-Jerez I, Roy S, Nogales J, Veerappan V, et al. Genome-wide identification of Medicago peptides involved in macronutrient responses and nodulation. Plant Physiol, 2017, 175: 1669–1689. [16] 曾祥翠, 杨永念, 李如月, 蒋学乾, 蒋旭, 徐嫣然, 刘忠宽, 龙瑞才, 康俊梅, 杨青川, 等. 紫花苜蓿MsCEP基因家族的鉴定及其调控根系生长发育功能的分析. 中国农业科学, 2024, 57: 4839–4853. Zeng X C, Yang Y N, Li R Y, Jiang X Q, Jiang X, Xu Y R, Liu Z K, Long R C, Kang J M, Yang Q C, et al. Identification of alfalfa (Medicago sativa) MsCEP genes and functional analysis of its regulation in root growth and development. Sci Agric Sin, 2024, 57: 4839–4853 (in Chinese with English abstract). [17] Li R, An J P, You C X, Shu J, Wang X F, Hao Y J. Identification and expression of the CEP gene family in apple (Malus × domestica). J Integr Agric, 2018, 17: 348–358. [18] Xu R B, Li Y F, Sui Z P, Lan T Y, Song W J, Zhang M, Zhang Y R, Xing J W. A C-terminal encoded peptide, ZmCEP1, is essential for kernel development in maize. J Exp Bot, 2021, 72: 5390–5406. [19] Zhang L, Ren Y, Xu Q, Wan Y M, Zhang S Z, Yang G D, Huang J G, Yan K, Zheng C C, Wu C G. SiCEP3, a C-terminally encoded peptide from Setaria italica, promotes ABA import and signaling. J Exp Bot, 2021, 72: 6260–6273. [20] Liu Y T, Zuo T T, Qiu Z W, Zhuang K Q, Hu S P, Han H B. Genome-wide identification reveals the function of CEP peptide in cucumber root development. Plant Physiol Biochem, 2021, 169: 119–126. [21] Lebedeva M A, Gancheva M S, Kulaeva O A, Zorin E A, Dobychkina D A, Romanyuk D A, Sulima A S, Zhukov V A, Lutova L A. Identification and expression analysis of the C-TERMINALLY ENCODED PEPTIDE family in Pisum sativum L. Int J Mol Sci, 2022, 23: 14875. [22] Qiu Z W, Zhuang K Q, Liu Y T, Ge X M, Chen C, Hu S P, Han H B. Functional characterization of C-TERMINALLY ENCODED PEPTIDE (CEP) family in Brassica rapa L. Plant Signal Behav, 2022, 17: 2021365. [23] Liu D, Shen Z P, Zhuang K Q, Qiu Z W, Deng H M, Ke Q L, Liu H J, Han H B. Systematic annotation reveals CEP function in tomato root development and abiotic stress response. Cells, 2022, 11: 2935. [24] Xu K X, Tian D D, Wang T J, Zhang A J, Elsadek M A Y, Liu W H, Chen L P, Guo Y F. Small secreted peptides (SSPs) in tomato and their potential roles in drought stress response. Mol Hortic, 2023, 3: 17. [25] Pan X L, Deng Z C, Wu R R, Yang Y L, Akher S A, Li W, Zhang Z L, Guo Y F. Identification of CEP peptides encoded by the tobacco (Nicotiana tabacum) genome and characterization of their roles in osmotic and salt stress responses. Plant Physiol Biochem, 2024, 209: 108525. [26] Mei Z Y, Li B, Zhu S H, Li Y, Yao J B, Pan J W, Zhang Y S, Chen W. A genome-wide analysis of the CEP gene family in cotton and a functional study of GhCEP46-D05 in plant development. Int J Mol Sci, 2024, 25: 4231. [27] Taleski M, Jin M, Chapman K, Taylor K, Winning C, Frank M, Imin N, Djordjevic M A. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant-microbe interactions. J Exp Bot, 2024, 75: 538–552. [28] Imin N, Mohd-Radzman N A, Ogilvie H A, Djordjevic M A. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J Exp Bot, 2013, 64: 5395–5409. [29] Zhu F G, Deng J, Chen H, Liu P, Zheng L H, Ye Q Y, Li R, Brault M, Wen J Q, Frugier F, et al. A CEP peptide receptor-like kinase regulates auxin biosynthesis and ethylene signaling to coordinate root growth and symbiotic nodulation in Medicago truncatula. Plant Cell, 2020, 32: 2855–2877. [30] Zhu F G, Ye Q Y, Chen H, Dong J L, Wang T. Multigene editing reveals that MtCEP1/2/12 redundantly control lateral root and nodule number in Medicago truncatula. J Exp Bot, 2021, 72: 3661–3676. [31] Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science, 2014, 346: 343–346. [32] Nadiatul A Mohd-Radzman C L. Different pathways act downstream of the CEP peptide receptor CRA2 to regulate lateral root and nodule development. Plant Physiol, 2016, 171: 2536–2548. [33] Luo Z P, Wang J, Li F Y, Lu Y T, Fang Z J, Fu M D, Mysore K S, Wen J Q, Gong J M, Murray J D, et al. The small peptide CEP1 and the NIN-like protein NLP1 regulate NRT2.1 to mediate root nodule formation across nitrate concentrations. Plant Cell, 2023, 35: 776–794. [34] Roy S, Griffiths M, Torres-Jerez I, Sanchez B, Antonelli E, Jain D, Krom N, Zhang S L, York L M, Scheible W R, et al. Application of synthetic peptide CEP1 increases nutrient uptake rates along plant roots. Front Plant Sci, 2021, 12: 793145. [35] Hsieh Y H, Wei Y H, Lo J C, Pan H Y, Yang S Y. Arbuscular mycorrhizal symbiosis enhances tomato lateral root formation by modulating CEP2 peptide expression. New Phytol, 2022, 235: 292–305. [36] Smith S, Zhu S S, Joos L, Roberts I, Nikonorova N, Vu L D, Stes E, Cho H, Larrieu A, Xuan W, et al. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Mol Cell Proteom, 2020, 19: 1248–1262. [37] Rzemieniewski J, Leicher H, Lee H K, Broyart C, Nayem S, Wiese C, Maroschek J, Camgöz Z, Olsson Lalun V, Djordjevic M A, et al. CEP signaling coordinates plant immunity with nitrogen status. Nat Commun, 2024, 15: 10686. [38] Wang X Y, Yu W L, Yuan Q, Chen X Y, He Y X, Zhou J G, Xun Q Q, Wang G D, Li J, Meng X Z. The pathogen-induced peptide CEP14 is perceived by the receptor-like kinase CEPR2 to promote systemic disease resistance in Arabidopsis. Plant Physiol, 2024, 197: kiae549. [39] 徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望. 中国农业科学, 2017, 50: 990–1015. Xu J F, Jin L P. Advances and perspectives in research of potato genetics and breeding. Sci Agric Sin, 2017, 50: 990–1015 (in Chinese with English abstract). [40] Qu L, Huang X Q, Su X, Zhu G Q, Zheng L L, Lin J, Wang J W, Xue H W. Potato: from functional genomics to genetic improvement. Mol Hortic, 2024, 4: 34. [41] 赵朋, 陈广侠, 张宴萍, 杨晓慧, 刘芳, 董道峰. 马铃薯苗期耐碱性鉴定方法及86份种质资源耐碱性综合评价. 作物学报, 2023, 49: 923–2934. Zhao P, Chen G X, Zhang Y P, Yang X H, Liu F, Dong D F. Alkaline tolerance identification method of potato seedlings and comprehensive assessment of alkaline tolerance of 86 kinds of potato germplasms. Acta Agron Sin, 2023, 49: 2923–2934 (in Chinese with English abstract). [42] Ogilvie H A, Imin N, Djordjevic M A. Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes. BMC Genomics, 2014, 15: 870. [43] Shen Z P, Zuo T T, Xia H L, Ai S C, Tao Q, Zeng C, Guo X P, Han H B. Synthetic CsCEP3 peptide attenuates salinity stress via ROS and ABA signaling in cucumber primary root. Horticulturae, 2023, 9: 921. [44] Aggarwal S, Rathore R S, Rakhi R, Kumari S, Singla-Pareek S L, Mustafiz A. OsCEP8-mediated abiotic stress response is associated with auxin and sugar homeostasis in plants. Environ Exp Bot, 2025, 229: 106082. [45] Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733–1742. [46] Tiwari J K, Buckseth T, Zinta R, Saraswati A, Singh R K, Rawat S, Dua V K, Chakrabarti S K. Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress. Sci Rep, 2020, 10: 1152. [47] Jing Q K, Hou H L, Meng X K, Chen A R, Wang L X, Zhu H S, Zheng S, Lyu Z Y, Zhu X B. Transcriptome analysis reveals the proline metabolic pathway and its potential regulation TF-hub genes in salt-stressed potato. Front Plant Sci, 2022, 13: 1030138. [48] Taleski M, Imin N, Djordjevic M A. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. J Exp Bot, 2018, 69: 1829–1836. [49] Roberts I, Smith S, Stes E, De Rybel B, Staes A, van de Cotte B, Njo M F, Dedeyne L, Demol H, Lavenus J, et al. CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis. J Exp Bot, 2016, 67: 4889–4899. |
| [1] | ZHUO Feng-Qi, TANG Zhen-San, LEI Yu-Jun, CHENG Li-Xiang, ZHAO Tian-Tian, LYU Tai, YANG Chen, ZHANG Feng. Screening of low glycemic potato varieties (lines) based on cooking methods and regeneration temperature [J]. Acta Agronomica Sinica, 2025, 51(9): 2538-2546. |
| [2] | ZHU Jin-Cheng, YANG Qiu-Hua, CHENG Li-Xiang, LI Wen-Li, SHI Ming-Ming, LI Hui-Xia, ZHANG Feng. Screening of potato germplasm for resistance to Meloidogyne incognita and analysis of related physiological responses [J]. Acta Agronomica Sinica, 2025, 51(9): 2307-2317. |
| [3] | YIN Li-Na, ZHANG Rui, CHEN Guo-Huan, BAI Lei, LI Jun, GUO Hua-Chun, YANG Fang. Comparison of wound healing capacity of tubers of different potato varieties [J]. Acta Agronomica Sinica, 2025, 51(9): 2399-2411. |
| [4] | ZHANG Hai-Yan, XIE Bei-Tao, DONG Shun-Xu, ZHANG Li-Ming, DUAN Wen-Xue. Effects of different types and ratios of water-soluble fertilizers on the yield and quality of table-use sweet potato [Ipomoea batatas (L.) Lam.] under drip irrigation [J]. Acta Agronomica Sinica, 2025, 51(9): 2485-2500. |
| [5] | JIA Xiao-Xia, QI En-Fang, WEN Guo-Hong, MA Sheng, HUANG Wei, LYU He-Ping, LI Jian-Wu, QU Ya-Ying, DING Ning. Establishment of regeneration system and creation of glufosinate-resistant germplasm for early-mid maturing potato ‘Longshu 20’ [J]. Acta Agronomica Sinica, 2025, 51(9): 2285-2294. |
| [6] | LI Qiu-Yun, LI Shi-Gui, FAN Jun-Liang, LIU Hao-Tian, ZHAO Xiao-Bin, LYU Shuo, WANG Yan-Hao, YUE Yun, ZHANG Ning, SI Huai-Jun. Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato [J]. Acta Agronomica Sinica, 2025, 51(7): 1838-1849. |
| [7] | YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746. |
| [8] | SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735. |
| [9] | YANG Shuang, BAI Lei, GUO Hua-Chun, MIAO Ya-Sheng, LI Jun. Morphological characteristics, types, and developmental process of potato leaf trichomes [J]. Acta Agronomica Sinica, 2025, 51(6): 1582-1598. |
| [10] | XU Jie, XIA Lu-Lu, TANG Zhen-San, LI Wen-Li, ZHAO Tian-Tian, CHENG Li-Xiang, ZHANG Feng. Odor quality analysis of potato tuber after steaming and baking [J]. Acta Agronomica Sinica, 2025, 51(5): 1409-1420. |
| [11] | ZHAO Xi-Juan, ZHANG Fan, LIU Sheng-Xuan, QIN Jun, CHEN Hui-Lan, LIN Yuan, LUO Hong-Bing, LIU Yi, SONG Bo-Tao, HU Xin-Xi, WANG En-Shuang. Optimization of extraction methods for four endogenous hormones in potatoes and analysis of their content during the process of releasing dormancy in tubers [J]. Acta Agronomica Sinica, 2025, 51(4): 1050-1060. |
| [12] | YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754. |
| [13] | SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727. |
| [14] | HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666. |
| [15] | WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311. |
|
||