%A QIN Yong-Sheng,LIU Ren-Zhong,MEI Hong-Xian,ZHANG Tian-Zhen,GUO Wang-Zhen %T QTL Mapping for Yield Traits in Upland Cotton(Gossypium hirsutum L.) %0 Journal Article %D 2009 %J Acta Agronomica Sinica %R 10.3724/SP.J.1006.2009.01812 %P 1812-1821 %V 35 %N 10 %U {https://zwxb.chinacrops.org/CN/abstract/article_4381.shtml} %8 2009-10-12 %X

As a major source of fiber and the world’s second-most important oil-seed crop after soybean, cotton plays an important role in the global economy. With the development of textile technology and social demand, it is urgent to breed and plant cotton varieties with high yield and super fiber quality. If the marker tightly linked with major gene controlling desired traits was identified, the efficiency of selection for agronomic traits might improve greatly. So far, high-identity genetic linkage map derived from upland cotton cultivars was lack because of their narrow genetic basis. Increasing the map density and tagging QTLs related with agronomic traits in Upland cotton will accelerate the process of marker assisted selection (MAS) breeding. CRI28 and XZM 2 are two cotton hybrids with high heterosis, which were bred by crossing CRI12, 4133, and 8891, respectively, with CRI12 as mutual parent. In this paper, two F2 mapping populations were respectively assembled by using the parents of CRI28 hybrid (CRI12 and 4133, their corresponding population named as Pop1) and the parents of XZM 2 hybrid (CRI12 and 8891, their corresponding population named as Pop2), further, a joinmap linkage map which contained 245 loci and covered 1 847.81 cM was integrated with 27 mutual polymorphic loci in the two mapping populations by JOINMAP 3.0 software, after screening about 6 000 SSR primers. By the composite interval mapping method (CIM), the QTLs for eight yield-related traits in F2 and F3 populations were mapped. Of them, 43 QTLs were identified in the three environments by separating analysis and 16 QTLs by the joint analysis in Pop1; similarly, 66 and 20 QTLs in Pop2 respectively. Some QTLs on chromosome A3, D8, and D9, and some stable QTLs not influenced by environment were also detected. Twelve QTLs for eight traits could be found simultaneously in the two populations, and additive QTLs for fruit branches per plant, lint percentage and seed index all were offered by CRI12, suggesting that the value of CRI12 in breeding is mostly contributed by increasing the offspring’s bolls. These results will provide very important information in Upland cotton breeding for yield by MAS.