%A XU Ke,ZHANG Jun,HUA Jin,ZHANG Hong-Cheng,ZHOU Pei-Jian,CHENG Fei-Hu,HUANG Da-Shan, CHEN Zhong-Ping,CHEN Guo-Liang,DAI Qi-Gen,HUO Zhong-Yang,WEI Hai-Yan,GAO Hui %T Yield Components and Population Characteristics of Super-High-Yielding Late Japonica Hybrid Rice in Double-Cropping Rice Area %0 Journal Article %D 2014 %J Acta Agronomica Sinica %R 10.3724/SP.J.1006.2014.00678 %P 678-690 %V 40 %N 04 %U {https://zwxb.chinacrops.org/CN/abstract/article_5619.shtml} %8 2014-04-12 %X
This study investigated the formation rule of super-high-yielding late japonica hybrid rice in the double-cropping rice area. Using Yongyou 8 as material in Shanggao of Jiangxi Province, we analyzed grain yield and its components and the population characteristics in three types of populations (medium yield: 8.25–9.75 t ha-1, high yield: 9.75–10.50 t ha-1; super high yield: >10.50 t ha-1). Results showed that supper-high-yielding population had more panicle and spikelets per panicle than medium and high yielding population. There was no significant difference in filled-grain percentage and 1000-grain weight among the three populations. Supper-high-yielding population exhibited more tillers at the transplanting stage and achieved expected number of stems and tillers on time, maximum number of stems and tillers at jointing stage. Then, the number of population stems and tillers began to decrease stably, achieving an expected number again. At last, ratio of productive tillers to total tillers of supper-high-yielding population was about 78.0%, which was higher than that of medium and high yielding population. The leaf area index of supper-high-yielding population was lower than that of medium and high yielding population at the early growth stage, with the maximum leaf area index of about 8.0 at booting, and stably decreasing to above 3.5 at maturity. The photosynthetic potential of supper-high-yielding population was smaller at early stage and larger at middle and late stages, as compared with the medium and high yielding populations, which was above 300 × 104 m2 d ha–1 from heading to maturity, and above 675 × 104 m2 d ha–1 in total. The dry matter accumulation of super-high-yielding population was smaller before jointing, increased faster after jointing, and reached about 10.5 t ha–1 at heading and 19.0 t ha–1 at maturity, which was significantly higher than that of medium and high yielding populations. Its translocation ratio of output was above 14.0%. In the super-high-yielding population the weight of dry matter of root, root-shoot ratio at each growth stage, root bleedings, N content, N uptaking, and utilization were greater than those of the medium and high yielding populations. Based on the results of this study, we discussed the regulation approaches and key cultivation techniques for raising the super-high-yielding population.