%A FENG Ping**,XING Ya-Di**,LIU Song,GUO Shuang,ZHU Mei-Dan,LOU Qi-Jin,SANG Xian-Chun,HE Guang-Hua,WANG Nan %T Characterization and Gene Mapping of Rolled Leaf Mutant 28 (rl28) in Rice (Oryza sativa L.) %0 Journal Article %D 2015 %J Acta Agronomica Sinica %R 10.3724/SP.J.1006.2015.01164 %P 1164-1171 %V 41 %N 08 %U {https://zwxb.chinacrops.org/CN/abstract/article_5924.shtml} %8 2015-08-12 %X

Leaves play a very important role in plant development for their function of photosynthesis. Moderate rolling leaves can facilitate the improvement of plant’s population structure and enhance light-use efficiency, which is very important in ideotype breeding. Therefore, the rolled leaf genes which regulate morphology in rice are important for exploring plant type and improving basic research in molecular biology. This study reported a new gene rolled leaf 28 (rl28), which was derived from EMS-treated restorer line Jinhui10. The mutational trait inherited steadily after several generations’ self-crossing. Compared with the wild-type, the leaves of rl28 began to curl along ?the vasculan bundle in medial axis from booting stage, leaf rolling index was significantly higher than that of the wild-type, and leaf angles were less than those of wild-type. Scanning electron microscopy and morphological analysis showed stoma number per 10-5 m2 and stomatal conductance were significantly higher than those of the wild-type, transpiration rate was significantly higher than that of wild-type. Compared with the wild-type, midrib of rl28 was much larger, and the number of the two adjacent vesicular cells decreased. Genetic analysis showed that the mutational trait was controlled by a single recessive nuclear gene. RL28 was finally mapped on chromosome 5 between SSR markers 5-43 and 5-34 with an interval of 90 kb. These results provide a foundation for cloning and function analysis of RL28.