%A TAO Yao, WANG Yu, ZHONG Si-Rong, WU Lin-Min, XIE Li-Juan, NIE Ya-Ping, ZHOU Wei, WANG Jian-Ge, LIU Qi-Yua %T Editing Sites in Transcript of Four F0-ATPase Subunit Genein Tobacco %0 Journal Article %D 2016 %J Acta Agronomica Sinica %R 10.3724/SP.J.1006.2016.01743 %P 1743-1753 %V 42 %N 12 %U {https://zwxb.chinacrops.org/CN/abstract/article_6200.shtml} %8 2016-12-12 %X

RNA editing exits extensively in mitochondria of higher plants and is one of the most important post-transcriptional regulation methods of gene expression in mitochondrial genomes of higher plants. At the same time, it is an essential process for forming function proteins. RNA editing can induce mutations in mitochondrial genes including nucleotide insertion, substitution, or deletion, which further affects the splicing and processing of primary transcripts, ultimately resulting in cytoplasmic male sterility (CMS). The results of research using multiple species showed that there is an obvious relationship between the four subunit genesof F0-ATPase and CMS. To explore the relationship, we studied RNA editing status of four mitochondrial genes atp6, atp9, orf25,and orfB from three tobacco male sterility lines (MS Zhongyan 90, MS Yunyan 85, MS K326) and their corresponding fertile lines . The four mitochondrial genes atp6, atp9, orf25,and orfB and their cDNA were distinctively amplified by PCR from six tobacco lines. After that, by means of making a comparison between the DNA sequences and the cDNA sequences of target genes to find RNA editing sites. The orf25 and orfB gene transcripts had the same RNA editing sites between male sterile and fertile lines. For atp6 gene, RNA editing didn't occur in male sterile lines, while there were six RNA editing sites in fertile lines, which all caused changes in the type of amino acids and there were four editing sites enhancing hydrophobicity of the amino acids. It inferred that the difference of protein's hydrophobicity was most likely to cause CMS. The atp9 gene had ten RNA editing sites in fertile lines, eight of which were the same as those in male sterile lines, while two C→T unique editing sites were absent in male sterile lines, of which one caused changes in amino acid. The nucleotide variations at 223 site of atp9 gene resulted in producing a termination code, which might be the necessary RNA editing to produce normal functional protein. These results suggest that lacking of the unique RNA editing sites might contribute to CMS property in tobacco.