%A Hui-Min WANG,Xin-Guo LI,Shu-Bo WAN,Zhi-Meng ZHANG,Hong DING,Guo-Wei LI,Wen-Wei GAO,Zhen-Ying PENG %T Structure and expression analysis of the members of peanut annexin gene family %0 Journal Article %D 2019 %J Acta Agronomica Sinica %R 10.3724/SP.J.1006.2019.84056 %P 390-400 %V 45 %N 3 %U {https://zwxb.chinacrops.org/CN/abstract/article_6627.shtml} %8 2019-03-12 %X

Annexin is a kind of calcium-dependent phospholipid binding proteins involved in the regulation of plant metabolism, growth and development, drought resistance and salt tolerance, and its structure is species-specific in different plants. In order to have a systematic analysis of the annexin gene family of peanut, we identified 30 annexin genes from the peanut genome database, and analyzed their characteristics using bioinformatics method. Peanut annexin (annexin of Arachis hypogaea, AnnAh) genes were unevenly distributed on 13 chromosomes, with 13 in A genome and 17 in B genome. There were 2 to 8 introns in the AnnAhs, with 5 to 6 introns in most AnnAhs. Phylogenetic analysis showed that the clustering relationship was complex. The annexins of lower plant, monocotyledonous and dicotyledonous plants were distributed at interval, with AnnAhs inserting in each branch. However, in each small branch, AnnAhs were basically clustered with the dicotyledonous plant annexins, and close to soybean, alfalfa and sunflower, followed by Arabidopsis; but several AnnAhs were associated with monocotyledonous and lower plant annexins. All 30 AnnAhs had no transmembrane domain, and 16 of them were located in cytoplasm, and the others’ localization was uncertain. Results of alternative splicing (AS) analysis of AnnAhs showed that only 11 AnnAhs experienced AS, which accounted for about 38% of all AnnAhs; the AS events occurred most in roots, followed by leaves, and the least in seeds. The expression level of AnnAhs was high in seed2 and root, followed by seed1, and lower in leaf. The comprehensive analysis of AnnAhs can provide some theoretical support for peanut resistance breeding.