%A ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun %T Seedling root characteristics and drought resistance of wheat in Shanxi province %0 Journal Article %D 2021 %J Acta Agronomica Sinica %R 10.3724/SP.J.1006.2021.01048 %P 714-727 %V 47 %N 4 %U {https://zwxb.chinacrops.org/CN/abstract/article_7082.shtml} %8 2021-04-12 %X

Wheat root morphology at the seedling stage is the basis of root distribution at the adult stage. It is closely related to stress resistance and yield. A comprehensive understanding of the root system characteristics at seedling stage and drought resistance is of great significance for the excellent germplasm utilization and early screening of drought resistance. Using 239 wheat varieties (lines) from Shanxi province, the root traits at seedling stage and their response to water stress were evaluated. The results showed that under normal growth, Shanxi wheat had a great variation in root traits at seedling stage, with the greatest variation in landraces. The maximum root length (MRL) tended to decrease slightly with the years, while other root traits were first increased and then decreased. There were differences among the root traits in response to water stress. The total root length (TRL) is the most sensitive to water, followed by root surface area (RSA), root volume (RV) and root biomass. The maximum root length (MRL) and the average number of roots (RN) were insensitive. The drought resistance of seedling roots showed a trend of decreasing first and then increasing with the years. Landraces and varieties released from 1970 to 1979 had moderately resistance to water stress, varieties released from 1980 to 1999 had lower drought resistance, and varieties released after 2000 had the better resistance, of which the dryland varieties were the best resistance. Correlation analysis of the seedling root characteristics and yield related traits suggested that the maximum root length, total root length, root volume and root biomass were significantly positively correlated with 1000-kernel weight and yield under rain-fed conditions, and the maximum root length and root biomass were also significantly positively correlated with adult plant drought resistance. The present study suggests that the maximum root length and root biomass at the seedling stage can be used as early generation selection parameters for drought resistance and yield in dryland breeding in semi-arid areas.