%A WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui %T Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. %0 Journal Article %D 2021 %J Acta Agronomica Sinica %R 10.3724/SP.J.1006.2021.04231 %P 2407-2422 %V 47 %N 12 %U {https://zwxb.chinacrops.org/CN/abstract/article_7207.shtml} %8 2021-12-12 %X

With the aggravation of soil acidification, aluminum toxicity has become one of the important stress factors affecting seed germination quality and crop yield. In order to study the molecular mechanism of the effect of aluminum toxicity on rapeseed seed germination, a total of 9344 significantly differentially expressed genes [log2 (fold change) ≥ 1 and FDR ≤ 0.05] were detected in the transcriptome analysis of aluminum-tolerant strain 18D300 and aluminum-sensitive strain 27011 by RNA-seq technology, among which 4406 DEGs (differentially expressed genes) were up-regulated and 4938 DEGs were down-regulated. GO enrichment showed that DEGs were mainly related to oxidation reaction, carbohydrate metabolism, and transporter activity. KEGG enrichment revealed that DEGs were mainly concentrated in phenylpropane biosynthesis, starch and sucrose metabolism, MAPK signal pathway-plant, plant-pathogen interaction, plant hormone signal transduction and so on. In addition, 44 DEGs (10 down-regulated and 34 up-regulated) were screened by integrating the results of RNA transcriptome sequencing and QTL mapping of root-related traits at germination stage under aluminum toxicity stress in rapeseed, which were mainly related to oxidative stress, osmotic regulation, cell wall modification, transporter, and hormone signal transduction.