水稻甬优12超高产群体分蘖特性及其与群体生产力的关系
韦还和1, 张洪程1,*, 孙玉海1, 孟天瑶1, 杨筠文2, 马荣荣3, 王晓燕4, 戴其根1, 霍中洋1, 许轲1, 魏海燕1
1扬州大学 / 农业部长江流域稻作技术创新中心 / 江苏省作物遗传生理重点实验室, 江苏扬州225009
2浙江省宁波市鄞州区农业技术服务站, 浙江宁波 315100
3浙江省宁波市农业科学院作物研究所, 浙江宁波 315101
4浙江省宁波市种子公司, 浙江宁波315101
*通讯作者(Corresponding author): 张洪程, E-mail:hczhang@yzu.edu.cn
摘要

以籼粳交超级稻甬优12为试材, 四叶一心期带蘖小苗移栽, 通过栽培措施的调控, 形成超高产(>13.0 t hm-2)和高产( >12.0 t hm-2)群体, 以高产群体作为对照, 对分蘖挂牌追踪, 比较研究超高产群体分蘖发生成穗特点。结果表明, 超高产群体分蘖产量及对总产量的贡献率分别为11.53 t hm-2和87.77%, 高产群体分别为10.59 t hm-2和87.40%。超高产和高产群体的分蘖利用都以一次和二次分蘖为主, 超高产群体一次和二次分蘖的产量均高于高产群体, 超高产群体一次分蘖产量的贡献率略低于高产群体, 二次分蘖产量的贡献率高于高产群体。超高产群体一次分蘖发生在第1至第9叶位, 第4至第7叶位是分蘖发生与成穗的优势叶位, 二次分蘖以1/3、2/3、3/3、2/4、1/5蘖位优势较强。对于高产群体而言, 一次分蘖以第4至第7叶位分蘖优势较强, 二次分蘖以1/3、2/3、3/3优势较强, 三次分蘖发生叶位数明显多于超高产群体, 但成穗率较低。超高产群体成穗分蘖的穗长、单穗重、总粒数、着粒密度的平均值高于高产群体, 结实率却略低于高产群体。

关键词: 甬优12; 超高产; 分蘖特性
Tillering Characteristics and Its Relationship with Population Productivity of Super-high Yield Rice Population of Yongyou 12
WEI Huan-He1, LI Chao1, ZHANG Hong-Cheng1,*, SUN Yu-Hai1, MENG Tian-Yao1, YANG Jun-Wen2, MA Rong-Rong3, WANG Xiao-Yan4, DAI Qi-Gen1, HUO Zhong-Yang1, XU Ke1, WEI Hai-Yan1
1Innovation Center of Rice Cultivation Technology in Yangtze Rive Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physio-logy of Jiangsu Province / Yangzhou University, Yangzhou 225009, China
2 Yinzhou District Agricultural Technology Service Station of Zhejiang Province, Ningbo 315100, China
3 Crop Research Institute, Ningbo Academy of Agricultural Sciences of Zhejiang Province, Ningbo 315101, China
4 Ningbo Seed Company of Zhejiang Province, Ningbo 315101, China
Abstract

We comparatively studied tillering and panicle formation characteristics of super-high and high yield populations formed by the regulation of cultivation measures usingindica-japonica super rice Yongyou 12 transplanted by seedlings with tillers at the age of four leaves with one leaf bud. The results showed that yield from tillers and its contribution rate to total yield were 11.53 t ha-1 and 87.77% for super-high yield population, and 10.59 t ha-1 and 87.40% for high yield population. Super-high yield population had higher yield from primary and secondary tillers which were the major part contributed to total yield, the contribution rate to total yield of primary tillers for super-high yield population was slightly lower than that for high yield group, while that of secondary tillers, the contribution rate to total yield was higher in super-high yield population than in high yield population. For super-high yield population, the primary tillers emerged from leaf 1 to leaf 9 on main stem, among them the tillers from leaf 4 to leaf 7 had higher emerging rate and more panicles, secondary tillers emerged and earbeared mainly in 1/3, 2/3, 3/3, 2/4, 1/5. High yield population had higher emerging rate of triple tillers but lower panicle rate than super-high yield population, its primary tillers emerged and earbeared mainly in 4/0 to 7/0 while in the secondary tillers 1/3, 2/3, 3/3. Super-high yield population had higher mean values in panicle length, panicle weight, total grain number and grain density than high yield population, but seed-setting rate was slightly lower.

Keyword: Yongyou 12; Super-high yield; Tillering characteristics

水稻的分蘖与成穗关系到群体动态发展以及产量结构的合理构成, 长期以来都是高产栽培研究的重点[ 1]。分蘖性强弱不仅与水稻本身遗传特性有关, 而且与栽培措施更是密切相关, 众多的研究表明, 秧苗素质[ 2]、株行距配置[ 3]、肥水管理[ 4]、栽插方式[ 5]以及化控措施[ 6, 7]等均可影响分蘖发生, 进而影响成穗率, 最终影响产量。成穗率是表征群体合理发展的重要指标[ 8], 一般而言, 群体发展动态越合理, 成穗率越高, 也更易获得高产[ 9]。最近几年, 水稻高产栽培的实践使人们认识到大穗型品种的超高产潜力, 如创造15 t hm-2超高产记录的籼粳交超级稻甬优12[ 10, 11, 12]。人们对甬优12超高产栽培途径以及形成机制研究后[ 13, 14]一致认为, 在稳定适宜穗数的基础上, 攻取大穗是其超高产栽培的基本思路, 因此适宜的穗数对于甬优12超高产潜力的发挥至关重要。但甬优12超高产群体存在成穗率偏低的现象[ 15], 一定程度上影响了适宜穗数的获得以及超高产形成的稳定性。因此, 深入了解甬优12的分蘖成穗特征, 对于稳定调控其超高产群体的形成意义重大。为此, 本研究通过栽培措施的调控, 形成超高产和高产群体, 通过比较研究, 揭示甬优12超高产群体的分蘖发生与成穗特点, 以期为甬优12超高产栽培的分蘖合理利用与调控措施提供理论与实践依据。

1 材料与方法
1.1 供试材料

选用超级稻甬优12, 主茎总叶数为17叶, 伸长节间数为7个。

1.2 试验设计与栽培管理

2012—2013年在浙江省宁波市鄞州区洞桥镇百梁桥村种粮大户许跃进田中进行试验。土壤类型为黄化青紫泥田, pH 5.51, 含有机质38.37 g kg-1、速效磷20.14 mg kg-1、速效钾78.45 mg kg-1、水溶性盐总量0.13 g kg-1。设置超高产和高产栽培两处理, 每小区面积30 m2, 3次重复。小区间作埂隔离, 并用塑料薄膜覆盖埂体, 保证单独排灌。

1.2.1 超高产栽培 应用精确定量栽培原理设计, 5月18日播种, 6月8日移栽, 旱育壮秧, 移栽秧龄为4.2叶左右, 单株平均带蘖数0.62个, 栽插密度为12.45万穴 hm-2 (30.0 cm × 26.7 cm), 每穴插2粒种子苗, 总施氮量300 kg hm-2, 基蘖肥∶穗肥 = 6∶4, 其中基肥在移栽前1 d施用, 分蘖肥于移栽后7 d和14 d施用, 穗肥于倒四、倒二叶等量施用。N∶P2O5∶K2O (质量比) = 2∶1∶2, 施过磷酸钙(含12% P2O5) 1250 kg hm-2, 作基肥一次施用, 钾肥50%作为基肥, 50%于倒四叶施用, 在基追肥中施用硅肥(90 kg hm-2)。在有效分蘖临界叶龄期的前1个叶龄, 当茎蘖数达到预期穗数的80%时, 开始排水搁田; 拔节至成熟期实行湿润灌溉, 干湿交替, 按超高产栽培要求防治病虫害。

1.2.2 高产栽培 5月18日播种, 6月8日移栽, 湿润育秧, 移栽秧龄为4.1叶左右, 单株平均带蘖数0.51个, 栽插密度为12.45万穴 hm-2 (30.0 cm × 26.7 cm), 每穴插2粒种子苗, 总施氮量225 kg hm-2, 基蘖肥∶穗肥 = 7∶3, N∶P2O5∶K2O (质量比) = 2∶1∶2, 基肥为45%复合肥750 kg hm-2, 分蘖肥为尿素130 kg hm-2, 在移栽后1个叶龄后施用, 穗肥于倒四和倒二叶分2次等量施用, 同时基施过磷酸钙, 钾肥50%用作基肥, 50%于倒四叶施用。当茎蘖数达到预期穗数时, 排水搁田; 拔节至成熟期实行湿润灌溉, 干湿交替, 按常规高产栽培防治病虫害。

1.3 测定项目与方法

1.3.1 分蘖发生与成穗的追踪 从每个小区选取长势比较一致的连续22株, 标记叶龄, 并对分蘖的发生情况挂牌追踪标记。为每个主茎和分蘖挂上标签, 在标签上写好分蘖的次级和叶位, 每5 d标记叶龄、挂牌一次。成熟期根据各分蘖的标记牌将各级分蘖分开, 单独收获, 记录各级各叶位分蘖的发生数、成穗数, 然后单独考种, 分穗长、一次枝粳数、二次枝粳数等考察穗部性状。各蘖位分蘖的发生率指该蘖位分蘖的实际发生数量与观察株数的百分比, 各蘖位分蘖的成穗率指该蘖位分蘖的成穗数与分蘖实际发生数的百分比。X/0分蘖指着生在主茎第X叶位上的一次分蘖, X/1分蘖指主茎第1叶位一次分蘖的第X叶位上的二次分蘖, 如1/1分蘖为主茎第1叶位一次分蘖的第1叶位上的二次分蘖, 2/1分蘖为主茎第1叶位一次分蘖的第2叶位上的二次分蘖, 其他依次类推。

1.3.2 茎蘖动态 每处理小区定2个观察点, 每个观察点15穴, 拔节期前每5 d观察一次, 拔节后每7 d观察一次。

1.3.3 产量测定 成熟期每小区调查100穴, 计算有效穗数, 取5穴调查每穗粒数、结实率和测定千粒重及理论产量; 每小区实产收割面积16 m2, 脱粒后晾晒, 并称量重量。

1.4 数据处理

运用Microsoft Excel软件录入数据、计算, 用DPS软件统计分析。由于2年试验结果趋势基本一致, 本文取2年数据平均值进行分析, 仅在1年试验中出现的分蘖, 按出现年度计算平均值。

2 结果与分析
2.1 产量及其构成因素

表1可知, 两年超高产栽培的产量分别比高产栽培处理高7.77%和7.67%, 差异极显著。对于产量构成因素而言, 超高产群体的颖花量极显著高于高产群体, 同时超高产群体的穗数和每穗粒数均极显著高于高产群体, 如2013年超高产群体的穗数和每穗粒数分别较高产群体高4.63%和7.27%。就结实率和千粒重而言, 超高产群体均略低于高产群体, 但差异不显著。

表1 超高产与高产群体的产量及其构成因素 Table1 Yield and its components of super-high yield and high yield populations
2.2 分蘖发生叶位及发生率

超高产和高产群体一次分蘖叶位都共有第1至第9个, 超高产群体在第1叶位分蘖的发生率高于高产群体, 第2叶位分蘖由于受到移栽植伤的影响, 发生率很低, 超高产和高产群体在3/0至7/0的分蘖发生率都较高, 平均为75%、90.9%、100%、100%和100%。二次分蘖中, 超高产群体以1/3、2/3、1/4、2/4、3/4、1/5、2/5发生率较高, 都达到50%以上, 高产群体以1/3、2/3、3/3、4/3、1/4、2/4、1/5、2/5等发生率较高。就三次分蘖发生率而言, 超高产和高产群体差异较为明显, 高产群体的发生叶位和发生率都明显高于超高产群体, 但成穗率很低。超高产和高产群体在1/0至9/0的分蘖发生叶位都有成穗, 且在3/0至7/0的分蘖成穗率较高, 平均为100%、100%、100%、95.45%和90.91%。二次分蘖成穗方面, 超高产群体在1/3、2/3、3/3、4/3、2/4的分蘖成穗率较高, 高产群体在1/3、2/3、3/3的分蘖成穗率较高(表2)。

表2 超高产与高产群体的分蘖发生及成穗率 Table 2 Tiller emerging and panicle rate of super-high yield and high yield populations (%)
2.3 茎蘖动态

由于不同的栽培措施, 超高产和高产群体的茎蘖动态截然不同(图1)。在移栽后的25 d中, 超高产群体的茎蘖数均高于高产群体, 此后的15 d, 高产群体的茎蘖数迅速增加, 并超过超高产群体, 两群体茎蘖数均在栽后40 d左右达到最大值, 此后均开始降低, 但超高产群体下降趋势较为平缓, 最终成穗率较高产群体高18.22%。

图1 超高产和高产群体的茎蘖动态Fig. 1 Dynamics of stems and tillers of super-high yield and high yield populations

2.4 单株成穗数的茎蘖组成及对产量的贡献

表3可知, 超高产群体的单株成穗数较高产群体高2.69%。从各级分蘖组成中, 超高产一次和三次分蘖数所占比例略低于高产群体, 二次分蘖数所占比例高于高产群体。超高产群体单株成穗数一次分蘖以3/0至7/0为主、二次分蘖以1/3、2/3、2/4、1/5为主, 高产群体单株成穗数一次分蘖以3/0至7/0为主、二次分蘖以1/3、2/3、3/3、2/5为主。同时超高产群体的群体产量也极显著高于高产群体(表4), 一次分蘖的群体产量以超高产群体高于高产群体, 对产量的贡献率略低于高产群体, 超高产群体二次分蘖的群体产量和对产量的贡献率都高于高产群体。

表3 超高产与高产群体成穗数的茎蘖组成 Table 3 Panicle composition of stems and tillers of super-high yield and high yield populations
表4 超高产与高产群体各叶位茎蘖对群体产量的贡献 Table 4 Contribution of stems and tillers in each leaf position to super-high yield and high yield populations
2.5 各叶位茎蘖的穗部性状

超高产和高产群体在穗部主要性状指标上差异较明显(表5)。就各叶位的穗长、单穗重、总粒数、着粒密度、一次枝粳数及粒数、二次枝粳数及粒数的平均值而言, 超高产群体均高于高产群体, 差异显著或极显著。同时超高产和高产群体的一次分蘖的穗型呈先减小后增大的趋势, 以2/0为拐点, 二次分蘖中超高产和高产群体都以1/3、3/3和1/4的穗型较大。

表5 超高产与高产群体各叶位茎蘖的穗部性状 Table 5 Panicle traits of stems and tillers in each leaf position of super-high yield and high yield populations
3 讨论
3.1 超高产群体分蘖发生与成穗特点

分蘖与成穗是一个复杂的生物学过程, 受多种因素影响[ 16, 17]。群体茎蘖消长动态可以直观体现分蘖发生与成穗情况, 茎蘖消长动态合理、成穗率高是超高产群体的基本特征之一[ 18, 19]。本试验条件下, 与高产群体相比, 超高产群体分蘖发生起点高且快, 并且通过合理的水肥调控, 高峰苗低且此后茎蘖消退幅度也较为平缓, 成穗率较高, 符合上述超高产群体的基本特征。水稻分蘖发生与成穗存在明显的优势叶位, 这些优势叶位分蘖发生率和成穗率高, 穗部性状好, 是超高产栽培应该利用的高效叶位区段。就分蘖优势而言, 一般是一次分蘖>二次分蘖>三次分蘖, 一次分蘖也以出生较早的分蘖优势较强[ 20], 但也有研究发现中部蘖位优势>下部蘖位>上部蘖位[ 21, 22]。本研究中超高产和高产群体各叶位的分蘖成穗率以及穗型都是一次分蘖>二次分蘖>三次分蘖, 同时超高产和高产群体的一次分蘖都以4/0、5/0、6/0、7/0优势较强, 平均分蘖成穗率在95%左右。二次分蘖中, 超高产群体以1/3、2/3、3/3、2/4、1/5蘖位优势较强, 而高产群体以1/3、2/3、3/3较强, 可见两群体二次分蘖的优势以低叶位为主, 并且超高产群体二次分蘖的优势叶位较多, 造成这种差异的原因可能有以下两点: (1)超高产群体采用旱育秧苗, 秧苗素质高, 单株平均带蘖数为0.62个。与高产群体相比, 超高产群体移栽后秧苗发根力强, 缓苗期短, 造成低位分蘖发生与成穗较多, 并且穗部性状也较好。(2)与超高产群体相比, 高产群体的茎蘖动态具有爆发性, 高峰苗偏高, 增加了无效分蘖的比例, 加剧了养分的竞争, 并且由于群体过大, 群体通风透光条件差, 引起下层叶片的早衰, 削弱了低叶位有效分蘖的生长。就三次分蘖而言, 高产群体的发生叶位数明显高于超高产群体, 但成穗率很低, 因此对于甬优12超高产栽培而言, 要注意控制其三次分蘖的发生, 从而提高群体分蘖成穗率。

3.2 超高产群体分蘖成穗对产量的贡献

近几十年来, 关于分蘖与产量的关系, 大致经历了“主穗为主”→“主茎分蘖并重”→“依靠分蘖”的过程, 这主要是肥料水平提高特别是大穗型杂交稻品种的推广, 使人们认识到分蘖对提高产量的重要作用[ 23]。郭振华等[ 24]通过徐稻3号机插超高产群体研究发现, 分蘖对产量的贡献达73.02%。周汉良等[ 25]和李冬霞等[ 26]认为手栽稻的优势叶位是主茎5~8叶, 其对应分蘖对产量的贡献占70%左右。本研究中分蘖对产量的贡献以超高产群体较高, 达87.77%, 更加肯定了分蘖对于甬优12超高产的重要作用。一次分蘖的优势叶位是主茎4~7叶位, 同时一次分蘖的产量以超高产群体高于高产群体, 其对产量的贡献为61.84%, 即一次分蘖仍是产量的基础。二次分蘖的产量及对产量的贡献率以超高产群体较高, 超高产群体二次分蘖以1/3、2/3、3/3、2/4、1/5优势较强, 且穗部性状好, 说明超高产群体应在一次分蘖合理发生的基础上, 注重二次分蘖尤其是低位二次分蘖的发生和成穗, 提高分蘖穗部经济性状的质量, 以利产量的提高。

3.3 甬优12超高产群体分蘖合理利用与调控的关键栽培技术

甬优12作为籼粳交大穗型品种, 具有大穗型品种的一般特征[ 27], 如籽粒多段灌浆等。分蘖主要发生在生育前期, 这时合理群体的构建不仅对稳定形 成适宜穗数, 而且对后期籽粒充实及光合产物的合理分配等均至关重要[ 28]。针对甬优12的品种以及分蘖特性, 栽培上应注意如下几点: (1)培育适龄壮秧。精选饱满、发芽率高的种子, 适当稀播匀播, 秧龄控制在20 d左右, 培育叶蘖同伸壮秧, 早发壮蘖, 充分利用有效分蘖叶位, 形成高质量的群体起点以及合理的群体动态, 提高成穗率。(2)肥料的合理配置。根据甬优12超高产栽培的多年实践, 确定以15 t hm-2为目标产量的施氮量为300 kg hm-2或更多些、氮磷钾之间的施用比例为2.0∶1.0∶2.5、氮肥施用按基蘖肥﹕穗粒肥为6∶4的比例较为适宜, 分蘖肥应分栽后7 d和14 d两次施用, 穗粒肥也应分促花肥、保花肥和粒肥3次施用, 以调节群体的合理动态。(3)水分的合理调控。其中特别是搁田期遵循“早、轻、多”的原则, 当群体的茎蘖数达到预期穗数的80%左右时, 由于正处于分蘖快速增长期, 因此应及早分多次自然断水轻搁田, 使有效分蘖正常生长, 无效分蘖受到抑制, 控制高峰苗数, 提高群体质量。

4 结论

甬优12超高产和高产群体的分蘖发生与成穗特性是有差异的, 虽然超高产和高产群体的分蘖利用都以一次和二次分蘖为主, 但一次和二次分蘖的产量以超高产高于高产群体。超高产群体一次分蘖以4/0~7/0蘖位优势强, 二次分蘖以1/3、2/3、3/3、2/4、1/5优势较强; 高产群体一次分蘖也以4/0~7/0优势较强, 二次分蘖则以1/3、2/3、3/3优势较强, 三次分蘖发生叶位数多, 但成穗率极低。与高产群体相比, 超高产群体单株成穗数多, 个体和群体生长协调、质量高, 穗部性状好, 单株生产力高。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.

参考文献
[1] 张恒栋, 张发丽, 石明, 钱晓刚. 不同移栽群体和水分调控对施氮分蘖成穗的影响. 中国农学通报, 2013, 29(6): 20-23
Zhang H D, Zhang F L, Shi M, Qian X G. The effects of different transplanting groups and water control on formation of spike from the tillers in rice. Chin Agric Sci Bull, 2013, 29(6): 20-23 (in Chinese with English abstract) [本文引用:1]
[2] 柴楠, 高向达, 任淑娟. 育秧床温调控剂及分蘖促进剂在水稻上的应用研究. 北方水稻, 2012, 42(3): 31-35
Chai N, Gao X D, Ren S J. Applied research on regulatory medicament of seedbed and tillering promotes on rice. North Rice, 2012, 42(3): 31-35(in Chinese with English abstract) [本文引用:1] [CJCR: 0.4]
[3] 王建林, 徐正进. 插秧量与株行距配置对水稻分蘖及穗重的影响. 沈阳农业大学学报, 2003, 34: 401-405
Wang J L, Xu Z J. Effect of Seeding quality and row spacing on the tillers and panicle weight of rice. J Shenyang Agric Univ, 2003, 34: 404-405 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.55]
[4] 俞爱英, 林贤青, 曾孝元, 吴增琪, 朱贵平. 不同灌溉方式对水稻分蘖成穗规律及产量影响研究. 灌溉排水学报, 2007, 26(1): 66-68
Yu A Y, Lin X Q, Zeng X Y, Wu Z Q, Zhu G P. Studies of different water managements on tillers, panicles, and mechanism of high-yield of rice. J Irrig & Drain, 2007, 26(1): 66-68 (in Chinese with English abstract) [本文引用:1] [JCR: 1.126]
[5] 余珺, 陶光灿, 郭兴强, 尹士采, 谢光辉. 黄淮平原麦茬直播稻分蘖发生规则及其与产量构成的关系. 中国农业科学, 2008, 41: 678-686
Yu J, Tao G C, Guo X Q, Yin S C, Xie G H. Tillering pattern and its effects on yield of rice directly sown after winter wheat in the Huang-Huai Plain. Sci Agric Sin, 2008, 41: 678-686 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.889]
[6] 刘杨, 顾丹丹, 许俊旭, 丁艳峰, 王强盛, 李刚华, 刘正辉, 王绍华. 细胞分蘖素对水稻分蘖芽生长及分蘖相关基因表达的调控. 中国农业科学, 2012, 45: 44-51
Liu Y, Gu D D, Xu J X, Ding Y F, Wang Q S, Li G H, Liu Z H, Wang S H. Effects of cytokinins on the growth of rice tiller buds and the expression of the genes regulating rice tillering. Sci Agric Sin, 2012, 45: 44-51 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.889]
[7] 刘杨, 丁艳峰, 王强盛, 李刚华, 许俊旭, 刘正辉, 王绍华. 植物生长调节剂对水稻分蘖芽生长和内源激素变化的调控效应. 作物学报, 2011, 37: 670-676
Liu Y, Ding Y F, Wang Q S, Li G H, Xu J X, Liu Z H, Wang S H. Effects of plant growth regulators on the growth of rice tiller bud and the changes of endogenous hormones. Acta Agron Sin, 2011, 37: 670-676 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[8] 蒋彭炎, 洪晓富, 冯来定, 马跃芳, 史济林. 水稻中期群体成穗率与后期群体光合效率的关系. 中国农业科学, 1994, 27(6): 8-14
Jiang P Y, Hong X F, Feng L D, Ma Y F, Shi J L. Relation between percentage of ear-bearing of colony in the middle phase and photosynthesis efficiency in the late in rice. Sci Agric Sin, 1994, 27(6): 8-14 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.889]
[9] 凌启鸿, 苏组芳, 张海泉. 水稻成穗率与群体质量的关系及其影响因素的研究. 作物学报, 1995, 21: 463-469
Ling Q H, Su Z F, Zhang H Q. Relationship between ear bearing tiller percentage and population quality and its influential factors in rice. Acta Agron Sin, 1995, 21: 463-469 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[10] 孙永飞, 梁尹明, 娄伟平. 甬优12每666. 7 m2产量在900 kg基础上实现1000 kg的可能性及途径与技术探索. 中国稻米, 2012, 18(6): 32-34
Sun Y F, Liang Y M, Lou W P. The possibility and technology of 1000 kg on the basis of 900 kg per 666. 7 m2 of Yongyou 12. China Rice, 2012, 18(6): 32-34 (in Chinese) [本文引用:1] [CJCR: 0.9745]
[11] 杨伟国, 王超, 金仲锦, 陈鲁妙. 甬优12特征特性与高产栽培技术. 中国稻米, 2011, 17(3): 62-64
Yang W G, Wang C, Jin Z J, Chen L M. The traits and high-yield cultivation technology of Yongyou 12. China Rice, 2011, 17(3): 62-64 (in Chinese) [本文引用:1] [CJCR: 0.9745]
[12] 孙永飞, 梁尹明, 吴光明, 杨琼琼, 陈金焕, 娄伟平. 对浙江甬优12最高单产突破1000 kg/667 m2的评议. 中国稻米, 2013, 19(4): 94-96
Sun Y F, Liang Y M, Wu G M, Yang Q Q, Chen J H, Lou W P. The comments of yield over 1000 kg per 667 m2 of Yongyou 12 in Zhejiang. China Rice, 2013, 19(4): 94-96 (in Chinese) [本文引用:1] [CJCR: 0.9745]
[13] 苏柏元, 朱德峰. 超级稻甬优12机插单产1000 kg/667 m2的产量结构与配套栽培技术. 中国稻米, 2013, 19(4): 97-100
Su B Y, Zhu D F. The yield components and cultivation technology of Yongyou 12 yielding over 1000 kg per 667 m2 through mechanical transplanting. China Rice, 2013, 19(4): 97-100 (in Chinese) [本文引用:1] [CJCR: 0.9745]
[14] 韦还和, 姜元华, 赵可, 许俊伟, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郑飞. 甬优系列杂交稻品种的超高产群体特征. 作物学报, 2013, 39: 2201-2210
Wei H H, Jiang Y H, Zhao K, Xu J W, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Zheng F. Characteristics of super-high yield population in Yongyou series of hybrid rice. Acta Agron Sin, 2013, 39: 2201-2210 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[15] 梁尹明, 孙永飞, 陈金焕, 吴凤姣, 王钦君, 梁桂华. 甬优12单产超900 kg/667 m2的性状表现. 中国稻米, 2012, 18(5): 39-41
Liang Y M, Sun Y F, Chen J H, Wu F J, Wang Q J, Liang G H. The traits of Yongyou 12 yield over 900 kg/667 m2. China Rice, 2012, 18(5): 39-41 (in Chinese) [本文引用:1] [CJCR: 0.9745]
[16] 隗溟, 廖学群, 李冬霞, 段海龙. 水稻分蘖节生产力比较. 植物生态学报, 2012, 36: 324-332
Wei M, Liao X Q, Li D X, Duan H L. Comparison of tillering productivity among nodes along the main stem of rice. J Plant Ecol, 2012, 36: 324-332 (in Chinese with English abstract) [本文引用:1] [JCR: 1.355]
[17] 李景蕻, 李刚华, 杨从党, 王绍华, 刘正辉, 王强盛, 丁艳锋. 增加土壤温度对高海拔生态区水稻分蘖成穗及产量形成的影响. 中国水稻科学, 2010, 24: 36-42
Li J H, Li G H, Yang C D, Wang S H, Liu Z H, Wang Q S, Ding Y F. Effects of temperature increase of soil on productive tiller percentage and yield of rice in high altitude ecological area. Chin J Rice Sci, 2010, 24: 36-42 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.494]
[18] 张洪程, 吴桂成, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 黄幸福, 龚金龙. 水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式. 中国农业科学, 2010, 43: 2645-2660
Zhang H C, Wu G C, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Huang X F, Gong J L. The SOI model of quantitative cultivation of super-high yielding rice. Sci Agric Sin, 2010, 43: 2645-2660 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.889]
[19] 张洪程, 赵品恒, 孙菊英, 吴桂成, 徐军, 端木银熙, 戴其根, 霍中洋, 许轲, 魏海燕. 机插杂交粳稻超高产形成群体特征. 农业工程学报, 2012, 28(2): 39-44
Zhang H C, Zhao P H, Sun J Y, Wu G C, Xu J, Duan-Mu Y X, Dai Q G, Huo Z Y, Xu K, Wei H Y. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice. Trans CSAE, 2012, 28(2): 39-44 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.299]
[20] 李杰, 张洪程, 龚金龙, 常勇, 吴桂成, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕. 稻麦两熟地区不同栽培方式超级稻分蘖特性及其与群体生产力的关系. 作物学报, 2011, 37: 309-320
Li J, Zhang H C, Gong J L, Chang Y, Wu G C, Guo Z H, Dai Q G, Huo Z Y, Xu K, Wei H Y. Tillering characteristics and its relationships with population productivity of super rice under different cultivation methods in rice-wheat cropping areas. Acta Agron Sin, 2011, 37: 309-320 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[21] 周汉良, 王玉珍, 甄英肖, 丁秀兰, 宁文书, 郑秋玲. 水稻蘖位优势的形成规律与高产利用研究. 华北农学报, 1998, 3(3): 57-60
Zhou H L, Wang Y Z, Zhen Y X, Ding X L, Ning W S, Zheng Q L. Formation of the superiority of rice tillering positions and its utilization for high yield. Acta Agric Boreali-Sin, 1998, 3(3): 57-60 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.951]
[22] 刘勇, 夏仲彦. 水稻分蘖成穗与产量组成关系分析. 安徽农业科学, 1999, 27(1): 23-26
Liu Y, Xia Z Y. Analysis of the relations between panicle bearing tillers and yield components of rice. J Anhui Agric Sci, 1999, 27(1): 23-26 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.687]
[23] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp42-120
Ling Q H. Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp42-120(in Chinese) [本文引用:1]
[24] 郭振华, 荆爱霞, 李华, 王永芳, 於永杰, 钱宗华, 李杰, 钱银飞, 霍中洋, 张洪程. 南方粳型超级稻不同方式超高产栽培的分蘖特性及其与产量形成的关系. 中国稻米, 2012, 18(1): 45-49
Guo Z H, Jing A X, Li H, Wang Y F, Yu Y J, Qian Z H, Li J, Qian Y F, Huo Z Y, Zhang H C. Tillering characteristics and its relationships with population productivity of super japoni-ca rice under different cultivation methods in south. China Rice, 2012, 18(1): 45-49 (in Chinese) [本文引用:1] [CJCR: 0.9745]
[25] 周汉良, 鲁学林, 郑秋玲. 水稻中位蘖的分蘖规律与生产力研究. 华北农学报, 2000, 15(2): 112-117
Zhou H L, Lu X L, Zheng Q L. Studies on tiller regulatory of middle tillering part and productive force of rice. Acta Agric Boreali-Sin, 2000, 15(2): 112-117 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.951]
[26] 李冬霞, 隗溟, 廖学群. 水稻不同节位和数量分蘖对经济产量的作用. 西南农业大学学报(自然科学版), 2006, 28: 366-368
Li D X, Wei M, Liao X Q. Effects of tillering position and tiller number on economic yield of paddy rice. J Southwest Agric Univ (Nat Sci Edn), 2006, 28: 366-368 (in Chinese with English abstract) [本文引用:1]
[27] 龚金龙, 胡雅杰, 龙厚元, 常勇, 李杰, 张洪程, 马荣荣, 王晓燕, 戴其根, 霍中洋, 许轲, 魏海燕, 邓张泽, 明庆龙. 大穗型杂交粳稻产量构成因素协同特征及穗部性状. 中国农业科学, 2012, 45: 2147-2158
Gong J L, Hu Y J, Long H Y, Chang Y, Li J, Zhang H C, Ma R R, Wang X Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Deng Z Z, Ming Q L. Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice. Sci Agric Sin, 2012, 45: 2147-2158 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.889]
[28] 付景, 杨建昌. 超级稻高产栽培生理研究进展. 中国水稻科学, 2011, 25(4): 343-348
Fu J, Yang J C. Research advances in physiology of super rice under high-yielding cultivation. Chin J Rice Sci, 2011, 25(4): 343-348 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.494]