|
种子萌发及其调控的研究进展
|
徐恒恒1, 黎妮2, 刘树君1, 王伟青1, 王伟平2, 张红1, 程红焱1, 宋松泉1,* |
Research Progress in Seed Germination and Its Control
|
XU Heng-Heng 1, LI Ni 2, LIU Shu-Jun 1, WANG Wei-Qing 1, WANG Wei-Ping 2, ZHANG Hong 1, CHENG Hong-Yan 1, SONG Song-Quan 1,*
|
|
图4 依赖和不依赖蛋白水解的GA信号模型 A: 标准的GA信号模型, 依赖GA的GID1-DELLA复合物的形成通过SCF SLY1 E3引起DELLA的识别和泛素化。多聚泛素化通过26S蛋白酶体导致DELLA的蛋白水解, 从而降低DELLA对GA反应的抑制作用。B: 当DELLA不被水解、GID1-GA-DELLA复合物的形成阻碍DELLA抑制GA反应时, sly1 突变体中不依赖蛋白水解的GA信号发生。C: EL1介导的DELLA磷酸化激活DELLA作为一种GA反应的抑制剂。引自Hauvermale 等 [ 84 ] 。 Fig. 4 Proteolysis-dependent and -independent GA signaling models A: The canonical GA signaling model illustrating GA-dependent GID1-DELLA complex formation resulting in DELLA recognition and ubiquitylation by the SCF SLY1 E3. Polyubiquitylation leads to DELLA proteolysis by the 26S proteasome, thereby decreasing the DELLA repression of GA responses. B: Proteolysis-independent GA signaling in sly1 mutants occurs when GID1-GA-DELLA complex formation blocks DELLA repression of GA responses without DELLA destruction. C: EL1-mediated phosphorylation of DELLA activates DELLA as a repressor of GA responses. From Hauvermale et al. [ 84 ] |
|
|
|
|
|