机械化种植对杂交籼稻F优498产量构成与株型特征的影响
雷小龙1, 刘利1, 刘波1, 黄光忠2, 郭翔3, 马荣朝1,*, 任万军1,*
1四川农业大学 / 农业部西南作物生理生态与耕作重点实验室, 四川温江 611130
2成都市郫县农村发展局, 四川郫县 611730
3四川省农业气象中心, 四川成都 610066
*通讯作者(Corresponding authors): 马荣朝, E-mail:marongcao@163.com; 任万军, E-mail:rwjun@126.com
摘要

为探明机械化种植杂交籼稻高产群体的株型特征, 以F优498为材料, 采用二因素裂区设计, 研究了不同穴苗数与播期下机直播、机插、手插3种种植方式的株型特征及其与产量构成的关系。结果表明: (1) 不同种植方式株型特征差异显著, 机直播和机插上三叶叶长、叶宽和叶间距大, 但叶基角和披垂度也较大; 手插上三叶大小适宜, 叶片厚而挺直; 机直播和机插株高和着生高度显著大于手插, 但手插比叶重、单株穗数和总叶片数显著高于机械化种植; 机直播的茎蘖夹角、穗粒数和单穗重显著低于机插和手插。推迟播期和低苗处理均使叶片增大, 比叶重、粒叶比、单株穗数、穗粒数和结实率随播期延迟显著降低。单穗重与上三叶长度、宽度、着生高度和株高均呈显著或极显著正相关, 以机插最高, 手插次之, 机直播最低。(2) 机直播产量显著低于机插和手插, 且随播期延迟和穴苗数减少显著降低。产量及其构成与株型特征密切相关, 机械化种植杂交籼稻高产株型的显著特征为适宜的株高、上三叶长度、群体LAI和茎集散度; 叶宽、比叶重、叶间距大和直立性好。足穗和大穗的统一是实现水稻高产的关键, 塑造个体优良的株型与优化群体结构是增产的前提, 机械化种植杂交籼稻应在时间允许的条件下尽早播栽, 穴苗数以3苗左右为宜。

关键词: 杂交籼稻; 机械化种植; 株型; 产量; 穗部性状
Effects of Mechanized Planting Methods on Yield Components and Plant Type Characteristics ofIndica Hybrid Rice Fyou 498
LEI Xiao-Long1, LIU Li1, LIU Bo1, HUANG Guang-Zhong2, GUO Xiang3, MA Rong-Chao1,*, REN Wan-Jun1,*
1Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Wenjiang 611130, China
2 Pixian Bureau of Rural Development, Pixian 611730, China
3 Agrometeorological Center of Sichuan Meteorological Bureau, Chengdu 610066, China
Abstract

In order to identify plant type characteristics of high-yield population ofindica hybrid rice using mechanized planting methods, a split plot field experiment was conducted using Fyou 498 as material. The plant type characteristics and their relationships with yield components in treatments of mechanized direct-seeding, mechanized transplanting and artificial transplanting with different seedlings per hill and different sowing dates were studied. The main results were as follows: (1) The traits of plant type differed markedly among the treatments of three planting methods. The length, width and leaf distance of top three leaves as well as blade tangent and drooping angle were larger under mechanized direct-seeding and transplanting. The top three leaves were erect with proper leaf area in the treatment of artificial transplanting. Plant height and leaf size of top three leaves were significantly larger in the treatments of mechanized direct-seeding and transplanting than in that of artificial transplanting. However, specific leaf weight, panicles per plant and total leaves were greater under artificial transplanting than under mechanized planting. For culm angle, spikelets and grain weight per panicle, the ranking orders of treatments were mechanized transplanting > artificial transplanting > mechanized direct-seeding. Leaf area increased with delaying sowing date or decreasing seedling number per hill and late sowing reduced the ratio of grain number to leaf area, panicles per plant, spikelets per panicle and seed-setting rate markedly. A significantly positive correlation was observed between grain weight per panicle and length, width, inserted height of leaf and plant height. Grain weight per plant was lower under mechanized direct-seeding than under mechanized transplanting and artificial transplanting. (2) The yield was significantly lower under mechanized direct-seeding than under mechanized transplanting and under artificial transplanting, which decreased by delaying sowing date or decreasing seedling number per hill. There were significant correlations between some traits of plant type and yield as well as its components. The notable characteristics of high-yield plant type in mechanized planting were proper plant height, length of top three leaves, LAI and culm angle. Meanwhile, the larger leaf width, specific leaf weight, leaf distance of top three leaves, erect leaves, adequate panicle number and large panicles were critical to high yield. Good plant type characteristics of individuality and optimal population structure are a prerequisite for increasing yield.Indica hybrid rice should be sowed earlier as the time allows with three seedlings per hill approximately in mechanized planting.

Keyword: Indica hybrid rice; Mechanized planting methods; Plant type; Yield; Panicle traits

中国约有2/3的人口以稻米为主食[ 1], 快速的经济发展导致耕地锐减将使其面临粮食紧缺问题[ 2, 3], 因此, 必须通过提高单产实现水稻稳产增产。育种与栽培学家一直将提高水稻增产潜力作为主要目标[ 4], 水稻高产不仅需要足够的个体数量, 也要提高群体内各个体质量[ 5]。水稻抽穗期株型是决定产量的关键性因素, 显著影响冠层的光合作用[ 6]。为进一步挖掘水稻增产潜力, 水稻育种以塑造“理想株型”为指南[ 4], 在特定生产条件下将有利于高产性状的最佳组配[ 7], 包括个体和群体2个水平[ 8]。个体株型包括株高、上三叶叶形和穗型特征, 群体特征含叶面积指数、粒叶比和收获指数等形态指标[ 1, 9]。水稻株型特征与单穗重、产量及栽培措施等密切相关[ 10]。因此, 了解水稻高产的株型特征有利于育种和优化栽培措施。近年来, 随着经济结构的转变, 中国农村优质劳动力不足, 水稻种植迫切需要向轻简化、机械化、规模化方向发展[ 11]。中国已形成机(手)插为主体、多种种植方式并存的水稻种植模式, 目前水稻种植机械化由快速向高速发展[ 12]。有关机械化种植杂交籼稻的株型结构的研究鲜有报道, 且四川盆地稻田周年种植模式以菜—稻和油(麦)—稻为主[ 13], 探讨杂交籼稻高产种植技术及其株型特征具有实际意义。为此, 本研究选用应用广泛的籼型杂交中稻F优498为材料, 探讨不同穴苗数与播期下机械穴直播和机插的株型特征及产量构成, 并分析株型指标与产量因子的相关性, 以期探明杂交籼稻机械化种植高产群体的株型特征, 为制定高产机械化种植配套技术和选育适宜机械化种植的杂交籼稻品种提供参考。

1 材料与方法
1.1 供试材料与种植条件

2012年和2013年在成都市郫县古城镇花牌村基地(30°52′N, 103°55′E)种植籼型杂交中稻F优498。该基地位于成都平原都江堰自流灌溉区, 属亚热带湿润性季风气候区。试验地前茬为蔬菜, 土壤属灰棕冲积土母质发育而成的水稻土, 质地为中壤。0~20 cm土层pH为5.85, 含有机质30.85 g kg-1、全氮1.85 g kg-1、全磷1.10 g kg-1、全钾28.90 g kg-1、碱解氮88.39 mg kg-1、速效磷149.71 mg kg-1、速效钾40.10 mg kg-1

1.2 试验设计与田间管理

二因素裂区设计, 种植方式为主区, 设机械穴直播(MD)、机插(MT)、手插(AT) 3个处理; 2012年以穴苗数为副区, 设低苗(L)和高苗(H) 2个处理, 2013年以播期为副区, 分早播(ES)和迟播(LS) 2个处理, 试验设计和秧苗素质见表1。机械穴直播(以下简称机直播)用行穴距可调、播量可控的2BD-10精量穴直播机播种, 机插用洋马VP6高速插秧机插秧。小区间用塑料薄膜包埂隔离, 单独肥水管理。小区面积36 m2, 重复3次。施纯氮180 kg hm-2, 按基蘖肥∶穗肥=6∶4, 其中基蘖肥以基肥∶分蘖肥=2∶1、穗肥以促花肥∶保花肥=5∶5施用。按N∶P2O5∶K2O=2∶1∶2确定磷、钾肥施用量, 磷肥作基肥一次性施用, 钾肥按基肥∶穗肥(促花肥)=5∶5施用, 两年主要生育期的气象条件见表2。机直播分蘖肥于四叶一心期施用, 基肥和穗肥的施用与机插处理一致, 其他管理措施按当地高产栽培要求实施。

1.3 测定项目与方法

栽插后5 d (直播四叶期)从每小区选取长势较一致的连续20株, 用红绳圈定并标记叶龄, 对水稻植株分蘖的发生情况挂牌追踪。每个主茎及分蘖挂上标签, 在标签上写好分蘖的次级和叶位, 每5 d挂牌和标记叶龄一次。于抽穗期和成熟期2013年按平均茎数取样4株, 2012年取抽穗一致的主茎8茎。按叶位测定各单茎株高和茎蘖夹角(分蘖与主茎的夹角), 所有绿叶的叶长和叶宽, 上三叶叶基角(叶片基部挺直部分与茎秆的夹角)、叶开角(叶枕至叶尖连线与茎秆的夹角)和叶枕距地面高度; 成熟期测定穗

表1 试验设计和秧苗素质 Table 1 Experimental design and seedling quality
表2 主要生育期的气象资料 Table 2 Meteorological condition in major growth period

长、穗弯曲度(穗颈与穗间连线与茎秆的夹角)和穗颈节距地面高度, 并按叶位测定各叶片的干重。成熟期根据分蘖的标签将各级分蘖分开, 单独收获和考种, 测定穗长、穗粒数等穗部性状, 并测定结实率和粒重, 单独称重。以各小区调查60穴计穗数, 并实收核产。叶面积(cm2) = 0.75×叶长(cm) × 叶宽(cm); 比叶重(mg cm-2) = 叶片干重(g)/叶面积(cm2) × 1000; 披垂度(°) = 叶开角(°) - 叶基角(°); 穗颈长度(cm)=穗颈节距地面高度(cm) - 剑叶叶枕距地面高度(cm); 着粒密度(grain cm-1) = 穗粒数/穗长(cm)。

1.4 统计分析

应用Microsoft Excel 2007整理、处理数据, SAS 9.0软件进行其他统计分析。用LSD (least significant difference tests)比较样本平均数的差异显著性。

2 结果与分析
2.1 种植方式对叶型的影响

2.1.1 叶形 由表3可见, 2012年水稻上三叶叶长均表现为机直播>机插>手插, 2013年水稻的剑叶和倒二叶则以手插最长, 机插倒三叶显著长于机直播和手插处理。机直播的剑叶和倒三叶长度随播期延迟明显增长, 倒二叶略有减小, 机插与机直播趋势相反, 手插的上三叶随之增长。从叶宽来看, 2012年机直播上三叶显著大于机插和手插处理, 2013年水稻上三叶叶宽均以机插处理最大, 剑叶以机直播最小, 倒二、倒三叶以手插最小。叶宽随播期延迟和穴苗数降低均呈增大的趋势, 种植方式与播期的互作对剑叶宽度有显著影响, 机插和手插随播期延迟显著增大, 手插反而减小。手插上三叶比叶重显著高于机直播和机插处理, 机直播与机插差异不显著。随播期延迟, 3种种植方式的比叶重均显著降低。种植方式和播期对倒二叶比叶重存在显著的交互效应, 机直播和机插随播期延迟显著减小, 手插反而略有增加。一次分蘖叶形的变化趋势与主茎基本一致。综合来看, 机直播和机插的叶片宽大, 手插处理比叶重高; 播期延迟使叶片变大, 但比叶重显著降低。

2.1.2 叶姿 叶姿是影响水稻捕获和利用太阳光能力的重要因素, 主要表现为叶片的高度与直立性等。表4表明, 手插的株高显著低于机直播和机插处理, 机直播与机插差异不显著。种植方式与播期的互作对株高影响显著, 机插和手插均随播期延迟显著增大, 机直播反而减小。剑叶着生高度随株高增加而增加, 2012年剑叶着生高度表现为机直播>机插>手插, 其中机直播显著高于机插和手插; 2013年以机插最高, 主茎以手插最低, 一次分蘖以机直播最低。不同种植方式间剑叶与倒二叶间距差异不显著, 差异主要表现在倒二叶与倒三叶间距上, 2012年表现为手插高于机插和机直播, 2013年则是机插显著大于机直播和手插。种植方式和播期对倒二叶与倒三叶间距存在显著的交互效应, 机插和手插随播期延迟显著减小, 机直播反而有所增大。虽然推迟播期使株高增加, 但倒二叶与倒三叶间距却显著减小。从叶片的直立性来看, 2012年机直播处理剑叶叶基角显著高于机插和手插, 倒二、倒三叶叶基角均是手插>机插>机直播; 2013年种植方式对叶片上三叶叶基角影响不显著, 随着播期延迟, 机直播和手插主茎的叶基角增大, 机插反而减小, 一次分蘖叶基角总体呈减小的趋势。从披垂度来看, 机直播剑叶显著低于机插和手插, 2012年倒二、三叶均为机直播>机插>手插, 其中机直播倒三叶显著高于手插; 2013年倒二、三叶以机插最大。随播期延迟, 机直播上三叶披垂度呈增大的趋势, 机插和手插有所减低。综合来看, 机直播和机插株高和上三叶叶位高, 叶片间距大, 但直立性偏差; 手插株高较低, 叶片间距偏小, 叶片短而厚, 直立性好, 有利于下部叶片受光。

2.1.3 叶面积指数和粒叶比 表5表明, 机直播单株穗数显著低于机插和手插处理, 且随播期延迟显著降低。茎蘖夹角以机插最大, 手插次之, 机直播最小, 其中机插显著高于机直播, 且随播期延迟显著减小。手插总叶数显著高于机插, 机插显著高于机直播, 手插较机直播和机插分别多1.73叶和0.84叶, 晚播较迟播处理少1.03叶。不同种植方式抽穗期的LAI差异不显著, 随播期延迟显著增大。种植方式对倒三叶至剑叶的LAI影响也不显著, 播期对倒三叶的LAI有显著影响, 随播期延迟显著增加, 但不同播期间倒二叶和剑叶的LAI差异不显著。因此, 播期延迟主要增大低叶位的叶面积, 对倒二叶和剑叶影响很小。不同种植方式间高效叶面积率和粒叶比差异不显著, 但随播期延迟均显著降低。种植方式与播期的互作对粒叶比存在显著的交互作用, 机插和手插随播期延迟显著降低, 机直播反而增加。虽然迟播处理增大了LAI, 但粒叶比低, 播期延迟仍会显著影响群体质量和群体光合生产力。

2.2 种植方式对产量构成和穗型的影响

两年机直播产量均显著低于机插和手插(表6), 机插与手插差异不显著, 2012年手插高于机插, 2013年机插产量略高于手插。不同种植方式产量随播期延迟而减少, 随穴苗数增加而增加。两年穗数分别为机插>手插>机直播和机直播>手插>机插, 差异均不显著; 每穗粒数则以机插最高, 手插次之, 机直播最低, 种植方式与播期的互作对每穗粒数影响显著, 机插和手插均随播期延迟显著降低, 机直播反而增加; 机直播的结实率显著低于机插和手插, 且随播期延迟显著降低; 种植方式和播期对粒重存在显著的交互效应, 推迟播期使机直播的粒重显著降低, 机插和手插却有所增加。从穗部性状来看, 2012年手插穗长显著长于机直播和机插处理, 2013年表现却相反; 穗颈长度均表现为机直播>机插>手插, 种植方式与播期的互作对穗颈长度影响显著, 机直播随播期延迟而减小, 机插和手插处理显著增加。

表3 不同种植方式的叶形 Table 3 Leaf shape under different planting methods
表4 不同种植方式的叶姿 Table 4 Leaf posture under different planting methods
表5 不同种植方式的茎蘖夹角、叶面积指数和粒叶比(2013年) Table 5 Angle between main stem and tiller, LAI and ratio of grain to leaf area under different planting methods in 2013

穗弯曲度和每穗粒数机直播均小于机插和手插处理。2013年着粒密度表现为机直播显著低于机插和手插, 说明机直播穗长粒少, 籽粒分布相对松散; 机插与手插枝梗和籽粒多, 籽粒分布较为集中; 2012年呈相反的趋势, 这可能与气象条件影响穗长形成有关。不同种植方式主茎单穗重差异不显著, 一次分蘖却表现为机插>手插>机直播, 随穴苗数增加和播期延迟均显著减小。

2.3 株型指标与产量构成因子的相关性分析

表7表明, 上三叶叶长、茎蘖夹角和株高与穗长、每穗粒数、着粒密度和单穗重呈显著或极显著正相关, 剑叶长与穗颈长度呈负相关, 与颈穗弯曲度呈显著正相关, 倒二、倒三叶的相关性表现相反。上三叶叶宽与穗颈长度呈正相关, 剑叶宽度与穗长、颈穗弯曲度、每穗粒数、着粒密度和单穗重呈显著或极显著负相关, 倒二、倒三叶与这些穗部性状呈正相关。穗长、颈穗弯曲度、每穗粒数、着粒密度和单穗重与剑叶和倒二叶叶基角大都呈显著或极显著正相关, 与倒三叶叶基角呈显著或极显著负相关。上三叶披垂度与穗长和单穗重呈显著或极显著负相关。穗长、颈穗弯曲度、每穗粒数、着粒密度和单穗重与剑叶着生高度呈极显著负相关, 倒二、三叶表现相反。结果表明, 适当增大上三叶叶长、叶宽, 增加株高、倒二、三叶着生高度, 减小披垂度, 有利于增加穗长和穗粒数从而提高单穗重。

表8可知, 产量与上三叶叶长、叶宽、披垂度和着生高度呈负相关, 多数达显著或极显著水平。穗数与上三叶叶宽、叶基角、着生高度和株高呈负相关。每穗粒数与上三叶叶长、叶宽和株高呈负相关, 与着生高度和茎蘖夹角多呈正相关。结实率和粒重与上三叶叶宽、叶基角、株高和着生高度呈正相关, 与上三叶叶长呈负相关。群体LAI与上三叶叶长、叶宽、着生高度和株高多呈显著或极显著正相关, 与叶基角、披垂度和茎蘖夹角大都呈显著或极显著负相关。粒叶比与上三叶叶长、叶宽、着生高度和株高均呈显著或极显著负相关。总叶片数与产量呈极显著正相关, 与穗数、每穗粒数、结实率、粒重、LAI和粒叶比均呈负相关。说明, 上三叶叶长、叶宽和着生高度对产量的影响是负向的, 茎蘖夹角对产量影响是正向的; 上三叶叶长和叶宽对LAI影响是正向的, 叶基角、披垂度和着生高度对群体LAI影响是负向的。叶片过长, 虽能增大群体叶面积, 但会减小粒叶比, 降低产量, 适宜的叶片大小更有助于提高群体产量; 适宜的茎蘖夹角有利于增大粒叶比, 从而提高产量。

表7 株型指标与穗部性状的相关系数(2012-2013, n=128)

3 讨论
3.1 不同种植方式对株型结构的影响水稻株型结构与产量关系密切[ 10], 受遗传因子、栽培措施和生态条件的制约[ 14]。优良的株型结构是高产的骨架[ 15], 水稻的长势主要体现在群体叶片数量和质量上。上三叶生长发育与穗分化同步进行, 高效叶面积与穗部性状密切相关[ 16]。马均等[ 10]认为理想的重穗型杂交稻剑叶、倒二叶、倒三叶长度分别达到40~45 cm、50~55 cm、50~60 cm, 宽度分别为2.0~2.2 cm、1.6~1.8 cm、1.4~1.6 cm。本试验两年上三叶叶长表现不同, 2012年机直播>机插>手插, 2013年手插显著长于机直播和机插, 手插处理基本符合该范围, 推迟播期和降低穴苗数叶长显著增长; 两年分别表现为机直播和手插处理叶片宽大, 其原因可能是不同种植方式生育进程不同, 上三叶生长期的气象条件有明显差异, 2012年机直播和迟播处理这一时期降雨量均显著增加。比叶重高有利于扩大叶源量且直立性好[ 17], 袁隆平[ 9]认为上三叶应挺直、窄、凹、厚, 上三叶比叶重以机直播最低, 机插次之, 手插最高, 且随播期延迟均显著降低。理想株型着眼于塑造优良的受光姿态[ 18], 一般认为剑叶叶角小, 倒二、倒三叶叶角顺次增大的宝塔形叶层结构, 其光合利用率高。叶间距影响下层的通风受光条件, 株高增加, 着生高度也随之增加, 但叶间距表现不一, 机插处理倒二叶与倒三叶间距最大, 有助于基部叶片受光。适宜的LAI能提高叶片的光能利用率, 达到强源的作用, 本试验的机插和手插群体LAI略低于机直播, 但高效LAI差异不显著, 最终并未减产, 说明适中的LAI有利于改善田间通透条件。水稻穗部性状是水稻能否高产的重要表现, 马均等[ 10]认为重穗型品种理想的穗部性状为单穗重4.8 g以上, 每穗粒数180~240粒, 千粒重28~30 g。李红宇等[ 19]的研究表明, 东北高产品种穗型直立或半直立(颈穗弯曲度<60°), 收获指数>0.52。袁隆平[ 9]
Table 7 Correlation coefficients between plant type indexes and panicle traits (2012-2013, n=128)
性状
Trait
穗长
Panicle length
穗颈长度
Panicle neck exertion
颈穗弯曲度
Curvature of neck-panicle
每穗粒数
No. of spikelets per panicle
着粒密度
Grain density
单穗重
Grain weight per panicle
FLL0.343**-0.1670.177*0.473**0.397**0.393**
SLL0.0650.288**-0.1080.1090.0910.205*
TLL0.228**0.373**-0.0850.208*0.1330.305**
FLW-0.344**0.344**-0.226*-0.336**-0.223*-0.227*
SLW0.1570.370**-0.0810.1460.0910.211*
TLW0.526**0.0010.1350.575**0.402**0.639**
FLBA0.505**-0.1020.251**0.544**0.377**0.596**
SLBA-0.007-0.352**0.222*0.1330.1720.060
TLBA-0.536**0.067-0.213*-0.494**-0.312**-0.500**
FLDA-0.176*-0.247**0.249**0.186*0.320**0.108
SLDA-0.176*0.1100.0720.0150.122-0.036
TLDA-0.220*0.0620.068-0.147-0.045-0.193*
TLH-0.353**0.258**-0.244**-0.418**-0.309**-0.372**
SLH0.254**0.1410.0570.444**0.395**0.535**
TLH0.509**-0.0850.219*0.624**0.472**0.673**
AMT0.361**-0.0340.1500.445**0.410**0.469**
PH0.291**0.424**0.0670.395**0.320**0.578**
表8 株型指标与产量及其构成、叶面积指数和粒叶比的相关系数(2013, n=18) Table 8 Correlation coefficients of plant type indexes with yield, yield components, LAI and ratio of grain to leaf area (2013, n=18)
性状
Trait
产量
Yield
穗数
Panicles
每穗
粒数
NSP
结实率
Seed-setting rate
粒重
Grain weight
LAIFLAI2nd LAI3rd LAI粒叶比
Ratio of grain to leaf area
FLL-0.353-0.2380.0980.1210.3390.639**-0.1100.1610.860**-0.515*
SLL-0.549*0.095-0.605**0.0830.3210.505*0.2000.646**0.218-0.716**
TLL-0.0210.253-0.162-0.224-0.611**-0.1390.699**0.043-0.3850.288
FLW-0.252-0.3200.0870.0890.3630.544*-0.3420.0490.698**-0.539*
SLW-0.505*-0.054-0.0990.0000.3330.672**-0.0670.3670.656**-0.656**
TLW-0.094-0.368-0.1370.542*0.576*0.395-0.1440.0550.479*-0.663**
FLBA-0.091-0.224-0.3430.2290.510*0.040-0.272-0.099-0.094-0.400
SLBA0.652**-0.0950.4450.1220.484*-0.744**-0.042-0.626**-0.634**0.703**
TLBA0.515*0.069-0.0450.447-0.106-0.526*0.041-0.198-0.670**0.213
FLDA0.511*-0.0190.1960.120-0.463-0.475*0.082-0.394-0.551*0.372
SLDA-0.2830.487*-0.091-0.268-0.0640.4660.4180.4420.278-0.198
TLDA-0.1680.0280.356-0.123-0.0900.3530.2140.1950.575*0.008
TLH-0.286-0.3920.0010.2020.494*0.465-0.311-0.0130.551*-0.568*
SLH-0.076-0.481*0.1390.3170.3770.507*-0.173-0.0440.597*-0.528*
TLH-0.210-0.1420.0120.2160.4370.621**0.0530.3870.576*-0.530*
AMT0.744**-0.1460.0990.349-0.101-0.3450.149-0.386-0.3860.283
PH-0.134-0.336-0.0840.512*0.651**0.432-0.1290.1020.532*-0.501*
TL0.747**-0.2740.0980.1210.339-0.515*-0.047-0.432-0.536*-0.303

***表示达0.05 和0.01 显著水平。TL: 总叶片数。其他缩写同表4和表7。

* and**: significantly different at the 0.05 and 0.01 probability levels, respectively. TL: total leaf number; NSP: No. of spikelets per panicle. Other abbreviations are the same as given in Table 4 and Table 7.

Table 7 Correlation coefficients between plant type indexes and panicle traits (2012-2013, n=128)

***表示达0.05和0.01显著水平。FLL: 剑叶长度; SLL: 倒二叶长度; TLL: 倒三叶长度; FLW: 剑叶宽度; SLW: 倒二叶宽度; TLW: 倒三叶宽度; FLBA: 剑叶叶基角; SLBA: 倒二叶叶基角; TLBA: 倒三叶叶基角; FLDA: 剑叶披垂度; SLDA: 倒二叶披垂度; TLDA: 倒三叶披垂度; TLH: 剑叶着生高度; SLH: 倒二叶着生高度; TLH: 倒三叶着生高度; AMT: 茎蘖夹角; PH: 株高。

* and**: significantly different at the 0.05 and 0.01 probability levels, respectively. FLL: length of FL; SLL: length of L2; TLL: length of L3; FLW: width of FL; SLW: width of L2; TLW: width of L3; FLBA: blade tangent angle of FL; SLBA: blade tangent angle of L2; TLBA: blade tangent angle of L3; FLDA: drooping angle of FL; SLDA: drooping angle of L2; TLDA: drooping angle of L3; TLH: inserted height of FL; SLH: inserted height of L2; TLH: inserted height of L3; AMT: angle between main stem and tiller; PH: plant height.

3 讨论
3.1 不同种植方式对株型结构的影响

水稻株型结构与产量关系密切[ 10], 受遗传因子、栽培措施和生态条件的制约[ 14]。优良的株型结构是高产的骨架[ 15], 水稻的长势主要体现在群体叶片数量和质量上。上三叶生长发育与穗分化同步进行, 高效叶面积与穗部性状密切相关[ 16]。马均等[ 10]认为理想的重穗型杂交稻剑叶、倒二叶、倒三叶长度分别达到40~45 cm、50~55 cm、50~60 cm, 宽度分别为2.0~2.2 cm、1.6~1.8 cm、1.4~1.6 cm。本试验两年上三叶叶长表现不同, 2012年机直播>机插>手插, 2013年手插显著长于机直播和机插, 手插处理基本符合该范围, 推迟播期和降低穴苗数叶长显著增长; 两年分别表现为机直播和手插处理叶片宽大, 其原因可能是不同种植方式生育进程不同, 上三叶生长期的气象条件有明显差异, 2012年机直播和迟播处理这一时期降雨量均显著增加。比叶重高有利于扩大叶源量且直立性好[ 17], 袁隆平[ 9]认为上三叶应挺直、窄、凹、厚, 上三叶比叶重以机直播最低, 机插次之, 手插最高, 且随播期延迟均显著降低。理想株型着眼于塑造优良的受光姿态[ 18], 一般认为剑叶叶角小, 倒二、倒三叶叶角顺次增大的宝塔形叶层结构, 其光合利用率高。叶间距影响下层的通风受光条件, 株高增加, 着生高度也随之增加, 但叶间距表现不一, 机插处理倒二叶与倒三叶间距最大, 有助于基部叶片受光。适宜的LAI能提高叶片的光能利用率, 达到强源的作用, 本试验的机插和手插群体LAI略低于机直播, 但高效LAI差异不显著, 最终并未减产, 说明适中的LAI有利于改善田间通透条件。

水稻穗部性状是水稻能否高产的重要表现, 马均等[ 10]认为重穗型品种理想的穗部性状为单穗重4.8 g以上, 每穗粒数180~240粒, 千粒重28~30 g。李红宇等[ 19]的研究表明, 东北高产品种穗型直立或半直立(颈穗弯曲度<60°), 收获指数>0.52。袁隆平[ 9]

株型指标与产量及其构成、叶面积指数和粒叶比的相关系数(2013, n=18)

Table 8 Correlation coefficients of plant type indexes with yield, yield components, LAI and ratio of grain to leaf area (2013, n=18)

发现弯曲穗型可避免后期穗遮蔽冠层对群体光能利用的不利影响。本试验以杂交籼稻为供试品种, 与粳稻穗型差异大, 结果表明, 主茎穗长以手插最长, 一次分蘖以机插最长, 推迟播期使穗长显著增长; 穗颈长度表现为机直播>机插>手插, 随播期延迟而增加; 机插和手插穗粒数多、颈穗弯曲度大, 推迟播期使穗粒数和单穗重明显降低, 这可能与抽穗后积温显著降低有关。综合来看, 机插上三叶叶长、叶宽和叶间距大, 植株和叶位高, 茎集散度适中, 但叶片直立性偏差; 机直播叶宽、比叶重和总叶片数小, 株高和叶片着生高度较大, 单穗重较小; 手插植株稍矮, 叶片大小适宜, 比叶重高, 直立性好。

3.2 机械化种植的株型特征对产量构成的影响

理想的水稻株型结构可以最大限度提高群体的光能利用率, 从而增加产量[ 20]。一般认为, 上三叶长而宽且叶角小、增大比叶重和株高有利于高产[ 7, 14]。本研究发现, 产量与上三叶叶长和叶宽均呈负相关, 推迟播期使叶片增长变薄, 不利于下部叶片受光; 高苗处理使叶片减小, 产量得以显著提高。叶基角与产量呈正相关, 与前人结论[ 14]有所差异, 这可能与品种不同有关, 本试验3种种植方式的剑叶、倒二叶、倒三叶叶基角分别小于10°、15°、20°, 低于适宜的10°、20°、30°[ 10], 适当增大叶基角有利于提高光能利用率。产量与株高和叶片着生高度呈负相关, 机直播和迟播处理株高和叶片着生高度均较高, 产量显著降低, 这主要因为增加叶位高度时叶间距反而减小。茎蘖夹角和总叶片数与产量均呈极显著正相关, 说明在植株较高时, 适度松散有利于叶冠层的空间分布[ 21], 机插和手插处理茎蘖夹角显著高于机直播; 产量随生育期和积温增长而增加。

高产是穗数与大穗的有机结合[ 22], 本研究中最高产处理的穗数均不是最高, 说明足穗条件下大穗是高产的重要原因。穗粒数与上三叶长度和株高呈负相关, 与着生高度和茎蘖夹角正相关; 单穗重与上三叶叶长、株高和茎蘖夹角多呈显著或极显著正相关; 与倒二、三叶叶宽、着生高度呈显著或极显著正相关, 与剑叶则呈显著或极显著负相关; 与剑叶叶基角和披垂度呈正相关, 与倒三叶呈显著或极显著负相关。机插上三叶叶长适宜, 叶宽和着生高度大, 茎集散度较松散, 穗粒数和单穗重高; 机直播和迟播处理茎蘖夹角偏小, 叶片较大, 比叶重低, 披垂度大, 穗粒数和单穗重明显降低。机插与手插早播处理产量和单穗重均较好, 说明适中的株高、茎集散度和叶片形态, 合理配置冠层结构, 有利于提高光能利用率[ 6]。杂交籼稻F优498机械化种植高产的株型特征表现为, 单株穗数5~7个, 穗长23~25 cm, 每穗粒数140~180粒, 千粒重28~31 g, 单穗重4.5 g以上; 茎蘖夹角15°~20°, 株高110~ 115 cm; 剑叶、倒二叶、倒三叶长度分别达45~50 cm、50~60 cm、50~55 cm, 宽度分别为2.0~2.1 cm、1.7~1.8 cm、1.5~1.6 cm, 叶片厚而挺直。水稻高产的株型结构也因品种类型、生态气象条件、肥水运筹和播期不同而异, 在季节允许的条件下应尽早播栽和保证基本苗从而提高个体质量, 在足穗基础上争取大穗更易获得高产[ 23]

4 结论

3种种植方式下株型差异明显, 机直播和机插上三叶的叶长、叶宽和叶间距大, 但叶基角和披垂度也较大; 手插上三叶大小适宜, 叶厚而挺直; 机直播和机插株高和着生高度显著大于手插, 但手插比叶重、单株穗数和总叶片数显著高于机械化种植; 机直播的茎蘖夹角、穗粒数和单穗重显著低于机插和手插。推迟播期和降低穴苗数使株高和叶片增大, 比叶重、粒叶比、单株穗数、穗粒数和结实率随播期延迟显著降低。单穗重与上三叶长度、宽度、着生高度和株高均呈显著或极显著正相关, 表现为机插>手插>机直播。机直播产量显著低于机插和手插, 产量随播期延迟和穴苗数减少而显著降低。株型特征与产量及其构成密切相关, 高产水稻的株型特征为适宜的株高、上三叶长度、群体LAI; 叶宽、比叶重、叶间距大和直立性好; 茎集散度适中。足穗和大穗的统一是实现水稻高产的关键, 塑造优良的个体株型和优化群体结构有助于提高产量, 杂交籼稻机械化种植应在时间允许的条件下尽早播栽, 穴苗数以3苗左右为宜。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.

参考文献
[1] 凌启鸿. 作物群体质量. 上海: 上海科技出版社, 2000. pp42-210
Ling Q H. Quality of Crop Population. Shanghai: Shanghai Scientific & Technical Publishers, 2000. pp42-210(in Chinese) [本文引用:2]
[2] Brown L R. Who Will Feed China? Wake-up Call for a Small Planet. New York: Norton & Company, 1995. pp145-146 [本文引用:1]
[3] Horie T, Shiraiwa T, Homma K, Katsura K, Maeda S, Yoshida H. Can yields of lowland rice resume the increases that they showed in the1980s?Plant Prod Sci, 2005, 8: 259-274 [本文引用:1] [JCR: 0.802]
[4] Li G H, Xue L H, Gu W, Yang C D, Wang S H, Ling Q H, Qin X, Ding Y F. Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a ‘special eco-site’ and Nanjing, China. Field Crops Res, 2009, 112: 214-221 [本文引用:2] [JCR: 2.474]
[5] 凌启鸿, 张洪程, 蔡建中, 苏祖芳, 凌励. 水稻高产群体质量及其优化控制探讨. 中国农业科学, 1993, 26(6): 1-11
Ling Q H, Zhang H C, Cai J Z, Su Z F, Ling L. Investigation on the population quality of high yield and its optimizing control programme in rice. Sci Agric Sin, 1993, 26(6): 1-11 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.889]
[6] C G, Hu N, Yao K M, Xia S J, Qi Q M. Plant type and its effects on canopy structure at heading stage in various ecological areas for two-line hybrid rice combination, Liangyoupeijiu. Rice Sci, 2010, 17: 235-242 [本文引用:2] [CJCR: 0.3579]
[7] Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385-403 [本文引用:2] [JCR: 1.643]
[8] 杨守仁, 张龙步, 陈温福, 徐正进, 王进民. 水稻超高产育种的理论和方法. 中国水稻科学, 1996, 10: 115-120
Yang S R, Zhang L B, Chen W F, Xu Z J, Wang J M. Theories and methods of rice breeding for maximum yield. Chin J Rice Sci, 1996, 10: 115-120 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.494]
[9] 袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997, 12(6): 1-6
Yuan L P. Hybrid rice breeding for super high yield. Hybrid Rice, 1997, 12(6): 1-6 (in Chinese with English abstract) [本文引用:3] [CJCR: 0.605]
[10] 马均, 马文波, 明东风, 杨世民, 朱庆森. 重穗型水稻株型特征研究. 中国农业科学, 2006, 39: 679-685
Ma J, Ma W B, Ming D F, Yang S M, Zhu Q S. Studies on the characteristics of rice plant with heavy panicle. Sci Agric Sin, 2006, 39: 679-685 (in Chinese with English abstract) [本文引用:5] [CJCR: 1.889]
[11] 吴崇友, 金诚谦, 卢晏, 涂安富. 我国水稻种植机械发展问题探讨. 农业工程学报, 2000, 16(2): 21-23
Wu C Y, Jin C Q, Lu Y, Tu A F. Discussion of developing rice planting machine in China. Trans CSAE, 2000, 16(2): 21-23 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.299]
[12] 张文毅, 袁钊和, 吴崇友, 金梅. 水稻种植机械化进程分析研究—水稻种植机械化由快速向高速发展的进程. 中国农机化, 2011, (1): 19-22
Zhang W Y, Yuan Z H, Wu C Y, Jin M. Research on the process of rice planting mechanization-process of rice planting mechanization developing fastly to rapidly. Chin Agric Mech, 2011, (1): 19-22 (in Chinese with English abstract) [本文引用:1]
[13] 郑家国, 杨文钰, 池忠志, 任万军, 姜心禄, 樊高琼, 陈兴福. 四川盆地稻田周年高产高效种植模式. 四川农业科技, 2010, (5): 20-21
Zheng J G, Yang W Y, Chi Z Z, Ren W J, Jiang X L, Fan G Q, Chen X F. Annual high-yield, high-efficiency paddy cropping patterns of Sichuan basin. Sichuan Agric Sci & Technol, 2010(5): 20-21(in Chinese) [本文引用:1]
[14] 李景蕻, 李刚华, 张应贵, 罗启荣, 杨从党, 王绍华, 刘正辉, 王强盛, 丁艳锋. 精确定量栽培对高海拔寒冷生态区水稻株型及产量的影响. 中国农业科学, 2009, 42: 3067-3077
Li J H, Li G H, Zhang Y G, Luo Q R, Yang C D, Wang S H, Liu Z H, Wang Q S, Ding Y F. Effects of precise and quantitative cultivation on plant type and yield of rice in high altitude and cold ecological area. Sci Agric Sin, 2009, 42: 3067-3077 (in Chinese with English abstract) [本文引用:3] [CJCR: 1.889]
[15] 沈福成, 刘传秀. 水稻株型改良的理论与实践. 贵阳: 贵州科学技术出版社, 1990. pp116-136
Shen F C, Liu C X. Theory and Practice Modified the Plant Type of Rice. Guiyang: Guizhou Scientific & Technical Press, 1990. pp116-136(in Chinese) [本文引用:1]
[16] 凌启鸿, 张洪程, 苏祖芳, 凌励. 稻作新理论——水稻叶龄模式. 北京: 科学出版社, 1994. p186
Ling Q H, Zhang H C, Su Z F, Ling L. New Theory of Rice Cultural—The Leaf-age Model of Rice. Beijing: Science Press, 1994. p186 (in Chinese) [本文引用:1]
[17] 石利娟, 邓启云, 刘国华, 庄文, 陈立云. 水稻理想株型育种研究进展. 杂交水稻, 2006, 21(4): 1-6
Shi L J, Deng Q Y, Liu G H, Zhuang W, Chen L Y. Progress in ideal plant type breeding in rice. Hybrid Rice, 2006, 21(4): 1-6 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.605]
[18] 陈温福, 徐正进, 张龙步. 水稻超高产育种生理基础. 沈阳: 辽宁科学技术出版社, 1995. p146
Chen W F, Xu Z J, Zhang L B. Physiological Basis for Breeding of Super-High-Yield Rice. Shenyang: Liaoning Science and Technical Publishers, 1995. p146 (in Chinese) [本文引用:1]
[19] 李红宇, 侯昱铭, 陈英华, 权成哲, 闫平, 刘梦红, 武洪涛, 陈温福, 徐正进. 东北地区水稻主要株型性状比较分析. 作物学报, 2009, 35: 921-929
Li H Y, Hou Y M, Chen Y H, Quan C Z, Yan P, Liu M H, Wu H T, Chen W F, Xu Z J. Comparison of rice plant types in northeast region of China. Acta Agron Sin, 2009, 35: 921-929 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[20] 张洪程, 马群, 杨雄, 李敏, 葛梦婕, 李国业, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 刘艳阳. 水稻品种氮肥群体最高生产力及其增长规律. 作物学报, 2012, 38: 86-98
Zhang H C, Ma Q, Yang X, Li M, Ge M J, Li G Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Liu Y Y. The highest population productivity of nitrogen fertilization and its variation rules in rice cultivars. Acta Agron Sin, 2012, 38: 86-98 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[21] 陈温福, 徐正进, 张龙步, 杨守仁. 不同株型粳稻品种的冠层特征和物质生产关系的研究. 中国水稻科学, 1991, 5: 67-71
Chen W F, Xu Z J, Zhang L B, Yang S R. Studies on canopy properties and its relation to dry matter production in japonica rice varieties with different plant types. Chin J Rice Sci, 1991, 5: 67-71 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.494]
[22] 徐正进, 陈温福, 张文忠, 刘丽霞, 周淑清, 张龙步. 水稻的产量潜力与株型演变. 沈阳农业大学学报, 2000, 31: 534-536
Xu Z J, Chen W F, Zhang W Z, Liu L X, Zhou S Q, Zhang L B, Yang S R. The yield potentiality of rice and its development of plant type. J Shenyang Agric Univ, 2000, 31: 534-536 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.55]
[23] 龚金龙, 胡雅杰, 龙厚元, 常勇, 李杰, 张洪程, 马荣荣, 王晓燕, 戴其根, 霍中洋, 许轲, 魏海燕, 邓张泽, 明庆龙. 大穗型杂交粳稻产量构成因素协同特征及穗部性状. 中国农业科学, 2012, 45: 2147-2158
Gong J L, Hu Y J, Long H Y, Chang Y, Li J, Zhang H C, Ma R R, Wang X Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Deng Z Z, Ming Q L. Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice. Sci Agric Sin, 2012, 45: 2147-2158 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.889]