半干旱区全膜覆盖垄上微沟种植对土壤水热及马铃薯产量的影响
侯慧芝1, 王娟2, 张绪成1,*, 方彦杰1, 于显枫1, 王红丽1, 马一凡1
1甘肃省农业科学院旱地农业研究所 / 甘肃省旱作区水资源高效利用重点实验室, 甘肃兰州 730070
2甘肃省定西市农业科学院, 甘肃定西 743000
* 通讯作者(Corresponding author): 张绪成, E-mail: gszhangxuch@163.com, Tel: 0931-7614864

第一作者联系方式: E-mail: houhuizhi666@163.com

摘要

根据马铃薯的生长习性调节起垄造沟方式, 2012—2014年进行大田定位试验, 设置全膜覆盖垄上微沟(垄上营造10 cm高, 20 cm宽的微沟, 马铃薯种植在微垄顶部, RMF)、全膜覆盖垄沟种植(RF)和露地平作(CK) 3个处理, 测定土壤温度、土壤含水量和马铃薯产量, 计算≥10℃地积温、作物生育期耗水量、贮水量、水分利用效率等参数, 研究全膜覆盖垄上微沟种植对土壤水热环境和马铃薯水分利用效率的影响。结果表明, RMF和RF在平水年(2012年和2014年)可显著提高各生育期和全生育期≥10℃积温, 在丰水年(2013年)则与CK无差异。块茎膨大期0~80 cm的土壤贮水量RMF比CK低28.20~31.61 mm, 80~200 cm的土壤贮水量RMF高于RF和CK。与CK相比, RMF和RF明显提高马铃薯地上基部茎数、茎分枝数和茎干重; 马铃薯产量分别比CK提高60.78%~89.37%和41.91%~73.33%, 水分利用效率分别比CK提高49.46%~82.55%和35.62%~65.66%。RMF块茎膨大期的耗水量比CK增加66.52%; 在季节性干旱年份, 0~200 cm土层的土壤耗水量比RF增加14.19%, 从而显著提高产量和水分利用效率。

关键词: 半干旱区; 全膜覆盖; 垄上微沟; 温度; 水分; 产量
Effects of Mini-ditch Planting with Plastic Mulching in Ridges on Soil Water Content, Temperature and Potato Yield in Rain-fed Semiarid Region
HOU Hui-Zhi1, WANG Juan2, ZHANG Xu-Cheng1,*, FANG Yan-Jie1, YU Xian-Feng1, WANG Hong-Li1, MA Yi-Fan1
1 Institute of Dryland Farming, Gansu Academy of Agricultural Sciences
Key Laboratory of High Water Utilization on Dryland of Gansu Province, Lanzhou 730070, China
2 Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
Abstract

It is necessary to investigate the effects of the regulation of furrow and ridge regulated according to the potato growing characteristics on soil thermal-moisture status and potato productivity. A three-year (2012 to 2014) field trial was conducted at Dingxi Experimental Station of Gansu Academy of Agricultural Sciences (35º35' N, 104º36' E), in northwest Loess plateau. Potato cultivar Xindaping ( Solanum tuberosum) was selected as test material. With three treatments: 1) mini-ditch planting with plastic mulching in ridges (RMF), 2) ridge-furrow planting with plastic mulching (RF), and 3) field flat planting (CK). The soil temperature, soil water content and potato yield were determined, as well as soil accumulated temperature of ≥10℃, water consumption, soil water storage, water use efficiency and other parameters were calculated. The results showed that RMF and RF significantly increased ≥10℃ soil accumulated temperature at different growth periods and the whole growth period in normal rainfall years (2012 and 2014) , as compared with CK, but there was no significant difference of the temperature between plastic mulching treatments and CK in the abundant rainfall year (2013). The soil water storage of RMF in 0-80 cm soil was 28.20-31.61 mm lower, but in 80-200 cm soil higher than those of RF and CK. As compared with CK, RMF and RF significantly increased number of basal stems, number of branches and dry weight of stem, resulting in 60.78%-89.37% and 41.91%-73.33% increment of potato tube yield, and 49.46%-82.55% and 35.62%-65.66% increment of potato water use efficiency, respectively. Although the soil moisture and crop evapotranspiration were not varied significantly in RMF, the soil water consumption from 0 to 200 cm soil layer of RMF was 66.52% more than that of CK, and 14.19% more than that of RF in seasonal drought years, resulting in the higher tuber yield and water use efficiency.

Keyword: Semiarid region; Whole plastic mulching; Mini-ditch planting in ridges; Temperature; Soil water; Potato yield

甘肃中部半干旱区年降雨量300~500 mm, 受降水资源的限制, 作物产量长期低而不稳。尤其是春旱频发, 使春播作物如小麦、豆类作物等的产量长期徘徊在1500 kg hm-2以下[1]。因此, 压缩春播作物面积, 扩大夏播作物面积, 是该区作物生产实现稳产高产的主要方向。所以, 该区域夏播作物如马铃薯、玉米的种植面积逐年增加, 目前已占总耕地面积的50%以上[2, 3, 4, 5, 6, 7]。尤其是马铃薯的种植面积近几年迅速增加, 成为一个新兴的主导特色产业, 是农民增收和农业增产的一大经济支柱。

多年地膜覆盖种植试验结果表明, 半干旱区马铃薯在覆盖种植条件下, 季节性干旱胁迫和高湿胁迫并存, 有限的水分资源未能充分利用, 成为制约马铃薯产业发展的主要障碍因子[8, 9, 10, 11, 12]。因此, 如何降低和优化雨季的农田水热环境, 提高该区有限水资源的利用效率, 是提高作物水分生产效率的重点方向。近年来, 西北半干旱区马铃薯全膜覆盖垄沟种植方法(RF)得到大面积应用, 是一项集保墒、集雨、增温为一体的适宜于北部干旱半干旱区的抗旱种植技术。可提高降水利用效率和马铃薯产量[13, 14, 15, 16, 17, 18, 19, 20, 21]。目前马铃薯产量依然较低, 徘徊在15 000~22 500 kg hm-2左右, 水分生产潜力仍有较大挖掘空间。为此, 我们在全膜覆盖垄沟种植的基础上创建了马铃薯全膜覆盖垄上微沟方法(RMF), 该法在地面起垄后, 垄上营建小沟, 并用地膜全地面覆盖。为明确它的增产效应及其水热响应, 拟测定季节和年际土壤温度、土壤水分及生物量和产量, 旨在探索这种方法在生产中的意义, 为合理地应用于生产提供技术支持。

1 材料与方法
1.1 试验地概况

甘肃省定西市安定区香泉镇(35° 34′ N, 104° 37′ E), 海拔1970 m, 年平均气温6.2℃, 年辐射总量5898 MJ m-2, 年日照时数2500 h, ≥ 10℃积温2075.1℃, 无霜期140 d, 属中温带半干旱气候。作物一年一熟, 为典型旱地雨养农业区。年均降水量415 mm, 6月至9月降水量占年降水量的68%, 降水相对变率为24%, 400 mm降水保证率为48%。试验区土壤为黄绵土, 0~30 cm土层平均容重1.25 g cm-3, 田间持水量为23.18%, 永久凋萎系数为7.2%。

1.2 试验设计

设3个处理, 分别是全膜覆盖垄上微沟(RMF)、全膜覆盖垄沟种植(RF)和露地平播(CK)(图1), 每处理3次重复。供试马铃薯品种为新大坪, 行距50 cm, 株距35 cm, 播种密度57 000株 hm-2。小区面积9 m× 10 m = 90 m2。各处理施肥量均为有机肥15 t hm-2, P2O5 60 kg hm-2, K2O 22.5 kg hm-2, 全部作为基肥, N 90 kg hm-2, 其中60%作基肥, 40%作花期追肥。

图1 马铃薯田间种植示意图
RMF: 全膜覆盖垄上微沟; RF: 全膜覆盖垄沟种植; CK: 露地平播。
上图为全膜覆盖垄沟种植(传统种植模式), 下图为全膜覆盖垄上微沟种植模式(改进种植模式)。
Fig. 1 Schematic diagram of potato planting patterns
RMF: mini-ditch planting with plastic mulching in ridges; RF: ridge-furrow planting with plastic mulching; CK: field flat planting. The up panel shows whole field mulched by plastics with ridge-furrow planting model (traditional technology), the down panel shows ridge-furrow planting model which micro-ditch built on the ridge and whole field mulched by plastics (modified technology).

2012年4月20日播种, 9月15日收获; 2013年4月20日播种, 9月20日收获; 2014年4月20日播种, 9月25日收获。

1.3 测定指标与计算方法

1.3.1 土壤温度 每年按小区定点定时测定土壤温度。播种后每10 d分别于8:00、14:00和20:00测定0 (地表)、5、10、15、20和25 cm土层温度, 每小区测定1个位点。

1.3.2 ≥ 10℃地积温计算 参考阿米娜· 麦图尔迪等的方法[22], 计算≥ 10℃地积温。

Ae=i=1nTi-10

式中, $A_e$为≥ 10℃地积温, $T_i$为当日平均地温, $n$指计算时间(d)。

1.3.3 土壤贮水量 根据土壤容重和土壤含水量计算, 在马铃薯关键生育期用土钻取各小区0~200 cm土样, 测定步长为20 cm, 用烘干称重法测定土壤含水量。

1.3.4 产量 成熟期按小区收获计产, 并折合成公顷产量(kg hm-2)。

1.3.5 水分利用效率 WUE=Y/ET, 式中, Y为马铃薯产量, ET为总耗水量。ET = (播前土壤贮水量-收获后土壤贮水量) + 生育期内降雨量。

1.4 统计分析

运用Microsoft Excel 2007软件作图, DPS 12.1软件方差分析, 用Tukey法检验处理间的差异显著性。

2 结果与分析
2.1 试验区2012— 2014降雨量及平均气温

2012年试验区全年降雨484.4 mm, 马铃薯生育期降雨396.4 mm, 属平水年; 2013年试验区全年降雨551.9 mm, 马铃薯生育期降雨481.5 mm, 属丰水年; 2014年试验区全年降雨482.2 mm, 马铃薯生育期降雨338.3 mm, 属平水年, 降雨季节分配不均。2012年试验区最低温为-19.8℃, 最高温为21.6℃, 平均气温为6.33℃; 2013年最低温为-13.6℃, 最高温为21.4℃, 平均气温为7.19℃; 2014年最低温为-11.9℃, 最高温为23.6℃, 平均气温为6.82℃。

2.2 马铃薯不同种植方式对≥ 10℃地积温的影响

与CK相比, RMF和RF在平水年(2012年和2014年)显著提高各生育期≥ 10℃地积温, 全生育期RMF≥ 10℃地积温1643.0~2119.6℃, RF为1577.0~ 2038.6℃, 分别比CK高482.8~616.0℃和401.8~550℃; 在丰水年(2013年)与CK无差异(图3)。2012年和2014年, RMF和RF在苗期、开花期、块茎膨大期均显著高于CK, 2013年处理间差异不显著。无论是全生育期还是各个生育时期的地积温, RMF和RF在3年间无显著差异。结果表明, 覆盖可显著提高有效地积温, 但起垄方式对地积温无明显影响。

图2 2012-2014试验区降水分布和平均气温变化Fig. 2 Precipitation and average air temperature in test areas from 2012 to 2014

图3 不同处理在各生育期对马铃薯≥ 10 º C土壤积温的影响
RMF: 全膜覆盖垄上微沟; RF: 全膜覆盖垄沟种植; CK: 露地平播。同一生育期不同字母表示同一年份同一生育期不同处理差异显著(P< 0.05)。
Fig. 3 Effects of different treatments on soil ≥ 10 º C accumulated temperature at different grow stages
RMF: mini-ditch planting with plastic mulching in ridges; RF: ridge-furrow planting with plastic mulching; CK: field flat planting. Different letters above bars during the same growth stage in the same year mean significant difference among treatments at the 0.05 probability level.

2.3 全膜覆盖垄上微沟对马铃薯生育期0~200 cm土壤贮水量和阶段耗水量的影响

播前0~200 cm的土壤贮水量是RF> RMF> CK (图4), 但各处理间无显著差异。现蕾期RF和RMF 0~200 cm 的3年平均土壤贮水量分别为449.02 mm和435.28 mm, 均显著地大于CK; 但RF和RMF 0~200 cm的土壤贮水量3年均无显著差异。块茎膨大期0~200 cm的土壤贮水量表现为CK> RF> RMF, 2012年和2013年3个处理间差异不显著; 2014年CK和RF 0~200 cm的土壤贮水量显著地高于RMF。成熟期3个处理0~200 cm的土壤贮水量为RF最大, RMF次之, CK最小, 但无显著差异。

现蕾期0~200 cm的土壤耗水量为CK> RMF> RF, 且差异均不显著; 块茎膨大期各处理0~200 cm 的土壤耗水量以RMF最大, RF次之, CK最小, 且3年中PMF和RF均显著高于CK, 2014年RMF和RF间差异显著; 成熟期0~200 cm 的土壤耗水量3年均表现为CK> RF> RMF, 但3年3个处理间差异均不显著。

2.4 全膜覆盖垄上微沟对马铃薯生育期贮水量垂直分布的影响

0~200 cm土壤贮水量垂直变化与马铃薯生育时期及降水格局密切相关(图5)。2012年各处理从整地到播种相隔4 d, 降雨1.8 mm, 0~200 cm土壤贮水量均无差异。现蕾期降雨99 mm, 各处理0~200 cm土壤贮水量为RF> RMF> CK, 其中, RF和RMF 0~80 cm的土壤贮水量分别比CK高16.94 mm和7.52 mm。块茎膨大期降雨133.0 mm, RMF 0~80 cm的土壤贮水量分别比RF和CK低26.65 mm和28.39 mm, 均达显著水平, 80~200 cm RMF的土壤贮水量略高于RF和CK。成熟期降雨164.4 cm, 此阶段RF、RMF和CK三个处理0~200 cm各层的土壤贮水量比块茎膨大期分别增加53.59、65.55和35.15 mm, 说明此阶段的降雨除完全满足马铃薯生长所需外, 还有剩余水分下渗, 尤其是2个覆膜处理可以蓄积更多水分到更深土层。

2013年播前RF和RMF 0~200 cm各层的贮水量均高于CK, 在0~80 cm土层, RF和RMF的土壤贮水量分别比CK高16.88 mm和12.99 mm。现蕾期降雨134.7 cm, RF和RMF 0~200 cm各层的土壤贮水量大于CK, 其中, RF和RMF 0~80 cm的土壤贮水量分别比CK高24.34 mm和15.95 mm, 80~200 cm的土壤贮水量分别比CK高21.84 mm和15.13 mm。块茎膨大期降雨210.8 cm, RMF 0~80 cm 的土壤贮水量分别比RF和CK低25.39 mm和28.20 mm, 80~200 cm RMF的土壤贮水量略高于RF和CK。说明此阶段RMF处理加剧了0~80 cm的耗水。成熟期降雨136.0 mm, 3个处理0~200 cm的贮水量与块茎膨大期相比均有增加, 0~200 cm总贮水量表现为RF> RMF> CK。

图4 不同处理马铃薯0~200 cm土壤贮水量和耗水量的动态变化
RMF: 全膜覆盖垄上微沟; RF: 全膜覆盖垄沟种植; CK: 露地平播。柱形图为耗水量(主纵坐标), 线形图为土壤贮水量(副纵坐标)。
同一生育期不同字母表示同一年份同一生育期不同处理差异显著(P< 0.05)。
Fig. 4 Changes of different planting patterns on soil water storage and potato water consumption in 0-200 cm soil layer
RMF: mini-ditch planting with plastic mulching in ridges; RF: ridge-furrow planting with plastic mulching; CK: field flat planting. RMF: mini-ditch planting with plastic mulching in ridges; RF: ridge-furrow planting with plastic mulching; CK: field flat planting.
The bar is pea water consumption (main Y-axis), the line is soil water storage (sub Y-axis). Different letters above bars during the same growth stage in the same year mean significant difference among treatments at the 0.05 probability level.

2014年播前RF和RMF 0~200 cm的贮水量高于CK, 在0~80 cm土层, RF和RMF的土壤贮水量分别比CK高17.32 mm和10.93 mm。现蕾期降雨106.80 mm, RF和RMF 0~200 cm各层的土壤贮水量大于CK, 其中, RF和RMF 0~80 cm的土壤贮水量分别比CK高21.94 mm和15.07 mm。块茎膨大期降雨82.80 mm, 3个处理的耗水量均大于降雨量, RF、RMF和CK此阶段0~200 cm的土壤贮水量分别比现蕾期减少45.55、63.76和6.29 mm; RMF 0~80 cm的土壤贮水量分别比RF和CK低32.22 mm和31.61 mm, 且均差异显著。成熟期降雨148.70 mm, RF、RMF和CK 0~200 cm总的土壤贮水量分别比块茎膨大期增加48.54、68.94和29.03 mm。

2.5 全膜覆盖垄上微沟对马铃薯干物质积累的影响

与CK相比, RMF和RF在各生育期均可明显提高马铃薯地上基部茎数、茎分枝数和茎干重, RMF和RF的地上干物质各指标在各生育期均无显著性差异。现蕾期RMF的基部茎数、茎分枝数和茎干重分别比CK高16.0%~31.8%、72.9%~101.8%、73.7%~ 91.9%; 开花期RMF的基部茎数、茎分枝数和茎干重分别比CK高28.6%~32.3%、45.3%~70.9%、77.0%~95.1%; 块茎膨大期RMF的基部茎数、茎分枝数和茎干重分别比CK高13.2%~24.1%、60.5%~ 73.3%、56.4%~70.9%; 成熟期RMF的基部茎数、茎分枝数和茎干重分别比CK高13.2%~29.6%、61.3%~ 72.7%、41.3%~73.1%。

2.6 全膜覆盖垄上微沟对马铃薯耗水量、产量和水分利用效率的影响

耗水量和马铃薯生育期降雨量密切相关, 2012— 2014三年马铃薯生育期降雨量分别为396.4、481.5和338.3 mm。各处理耗水量以2013年最高, 2012年次之, 2014年最低, 与3年马铃薯生育期降雨量呈正相关。3年3个处理间的耗水量无显著差异。

RMF和RF的马铃薯产量分别比CK提高60.78%~ 89.37%和41.91%~73.33%, 达显著水平。RMF三年的马铃薯产量分别比RF提高18.88%、16.05%和30.22%, 其中2014年差异显著。

RMF和RF的水分利用效率分别比CK提高60.61%~81.70%和41.50%~63.71%, 差异均达显著水平。RMF三年的水分利用效率分别比RF提高10.89%、10.99%和20.22%, 其中, 2014年差异显著。

图5 不同处理对马铃薯田0~200 cm土壤贮水量随生育期的垂直变化
RMF: 全膜覆盖垄上微沟; RF: 全膜覆盖垄沟种植; CK: 露地平播。
Fig. 5 Vertical dynamics of soil water storage in 0-200 cm soil in different treatments
RMF: mini-ditch planting with plastic mulching in ridges; RF: ridge-furrow planting with plastic mulching; CK: field flat planting.

图6 不同处理对马铃薯耗水量、产量和水分利用效率的影响
RMF: 全膜覆盖垄上微沟; RF: 全膜覆盖垄沟种植; CK: 露地平播。同一年份不同字母表示不同处理差异显著(P< 0.05)。
Fig. 6 Effects of different treatments on potato water consumption, yield, and WUE
RMF: mini-ditch planting with plastic mulching in ridges; RF: ridge-furrow planting with plastic mulching; CK: field flat planting.
Different letters above bars in the same year mean significant difference among treatments at the 0.05 probability level.

表1 各处理对马铃薯干物质积累的影响 Table 1 Effects of different treatments on dry matter of potato
3 讨论
3.1 全膜覆盖垄上微沟种植没有显著改变土壤有效积温

全膜覆盖垄沟种植后, 由于田间光照条件改善, 土壤与大气气流的交换受阻, 使马铃薯生长期间的有效积温增加, 促进早熟[9]。本研究表明, RF和RMF可显著提高土壤有效积温, RMF和RF平水年(2012年和2014年)全生育期≥ 10℃地积温分别比CK高482.8~616.0℃和401.8~550.0℃。起垄造沟后在田间形成了多个垄和沟, 改变了微地形, 土壤表面积增加, 使受热和散热面积同时增加, 可能使得土壤温度波动幅度更大, 但由于水分蒸发受阻, SPAC的水热交换发生变化, 这对土壤水热特性将产生显著作用。虽然RF和RMF的有效积温较CK显著增加, 但RF和RMF之间无显著差异, 因此, 尽管RMF土壤表面积较RF增加, 但未能显著影响土壤温度, 对马铃薯生长的热量条件没有明显影响。

3.2 全膜覆盖垄上微沟促进了马铃薯在季节性干旱年份的生殖生长阶段耗水

地膜覆盖可促进马铃薯生殖生长阶段的耗水。本研究表明, 在播前和现蕾期RF和RFM均可提高0~200 cm的土壤贮水量; 在块茎膨大期, RMF 0~80 cm的土壤贮水量明显低于FM和CK, 80~200 cm的土壤贮水量高于FM和CK, 尤其在季节性干旱年份(2014年)表现更为突出。相应地, 块茎膨大期RF和RMF 0~200 cm的土壤耗水量分别比CK高44.08%和66.52%, 且差异均显著。2014年RMF 0~200 cm的土壤耗水量比RF高14.19%, 差异显著。增加花后耗水是作物产量提高的一个关键因素, 小麦花后耗水增加, 使粒重和块茎重量显著提高, 产量和WUE显著增加[23, 24]。RMF比RF更能促进季节性干旱年份生殖生长阶段的耗水, 表明RFM在马铃薯生殖生长阶段, 尤其是在季节性干旱的年份, 可加大0~80 cm的耗水, 所以RMF使得土壤的水分分布更有利于马铃薯的利用, 这对产量的提高有利。

3.3 全膜覆盖垄上微沟在季节性干旱年份能增加产量和提高水分利用效率

全膜覆盖垄沟种植可明显提高马铃薯地上干物重, 显著增加块茎产量和WUE[3, 4]。本试验条件下, RMF和RF较CK在各生育期均可明显提高马铃薯地上基部茎数、茎分枝数和茎干重, RMF和RF的地上干物质各指标在各生育期均无显著性差异。RMF和RF的马铃薯产量分别比CK提高60.78%~89.37%和41.91%~73.33%, 水分利用效率分别比CK提高60.61%~81.70%和41.50%~63.71%, 差异均达显著水平。RMF三年的马铃薯产量分别比RF提高18.88%、16.05%和30.22%, 水分利用效率分别比RF提高10.89%、10.99%和20.22%, 2014年均差异显著。

4 结论

马铃薯全膜覆盖垄上微沟种植在季节性干旱年80~200 cm土壤贮水量、地上基部茎数、茎分枝数、茎干重、产量和WUE高于全膜覆盖垄沟种植和对照, 差异显著; 表明全膜覆盖垄上微沟能够促进马铃薯对土壤水分的利用, 更加充分地发挥旱作区马铃薯的水分生产潜力。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。

参考文献
[1] 肖国举, 王静. 黄土高原集水农业研究进展. 生态学报, 2003, 23: 1003-1011
Xiao G J, Wang J. Research on progress of rainwater harvesting agriculture on the Loess Plateau of China. Acta Ecol Sin, 2003, 23: 1003-1011 (in Chinese with English abstract) [本文引用:1]
[2] 石有太, 陈玉梁, 刘世海, 厚毅清, 裴怀弟, 王红梅, 张艳萍. 半干旱区不同覆膜方式对土壤水分温度及马铃薯产量的影响. 中国马铃薯, 2013, 27(1): 19-24
Shi Y T, Chen Y L, Liu S H, Hou Y Q, Pei H D, Wang H M, Zhang Y P. Influence of different mulching models on soil moisture and temperature, and yield of potato in semi-arid land . Chin Potato J, 2013, 27(1): 19-24 (in Chinese with English abstract) [本文引用:1]
[3] 秦舒浩, 张俊莲, 王蒂, 肖洪浪, 蒲育林. 陇中半干旱区马铃薯集雨限灌效应研究. 作物学报, 2011, 37: 138-145
Qin S H, Zhang J L, Wang D, Xiao H L, Pu Y L. Effects of limited supplemental irrigation on potato in the semiarid areas of middle Gansu province. Acta Agron Sin, 2011, 37: 138-145 (in Chinese with English abstract) [本文引用:2]
[4] 赵鸿. 黄土高原(定西)旱作农田垄沟覆膜对马铃薯产量和水分利用效率影响 . 兰州大学博士学位论文, 甘肃兰州, 2012
Zhao H. Effects of ridge and furrow mulching with plastic film on yield and water use efficiency of potato in semi-arid agroecosystem (Dingxi). PhD Dissertation of Lanzhou University, Lanzhou, China, 2012 (in Chinese with English abstract) [本文引用:2]
[5] 姚玉璧, 王润元, 邓振镛, 韩树林, 邢托勤. 黄土高原半干旱区气候变化及其对马铃薯生长发育的影响. 应用生态学报, 2012, 21: 379-385
Yao Y B, Wang R Y, Deng Z Y, Han S L, Xing T Q. Effects of climate change on potato growth in semi-arid region of Loess Plateau, China. Chin J Appl Ecol, 2012, 21: 379-385 (in Chinese with English abstract) [本文引用:1]
[6] 高世铭, 张绪成, 王亚宏. 旱地不同覆盖沟垄种植方式对马铃薯土壤水分和产量的影响. 水土保持学报, 2010, 24: 249-256
Gao S M, Zhang X C, Wang Y H. Influence of different mulching and furrow-ridge planting methods on soil moisture and yield of potato on dryland . J Soil Water Conserv, 2010, 24: 249-256 (in Chinese with English abstract) [本文引用:1]
[7] 汤瑛芳, 高世铭, 王亚红, 张绪成. 旱地马铃薯不同覆盖种植方式的土壤水热效应及其对产量的影响. 干旱地区农业研究, 2013, 31(1): 1-7
Tang Y F, Gao S M, Wang Y H, Zhang X C. Soil water and thermal effects of different mulching and planting methods and their influences on yield in dryland potato production. Agric Res Arid Areas, 2013, 31(1): 1-7 (in Chinese with English abstract) [本文引用:1]
[8] 范士杰, 王蒂, 张俊莲, 白江平, 宋吉轩, 马智黠. 不同栽培方式对马铃薯土壤水分状况和产量的影响. 草业学报, 2012, 21: 271-279
Fan S J, Wang D, Zhang J L, Bai J P, Song J X, Ma Z X. Effects of tillage strategies on the topsol water content and the yield of potato. Acta Pratac Sin, 2012, 21: 271-279 (in Chinese with English abstract) [本文引用:1]
[9] 范士杰, 王蒂, 张俊莲, 白江平, 刘文贤, 马智黠, 彭慧元. 不同栽培方式对马铃薯田间土壤温湿度及产量的影响. 农业工程学报, 2011, 27(11): 216-221
Fan S J, Wang D, Zhang J L, Bai J P, Liu W X, Ma Z X, Peng H Y. Effects of different cultivation techniques on soil temperature, moisture and potato yield. Trans CSAE, 2011, 27(11): 216-221 (in Chinese with English abstract) [本文引用:2]
[10] 陈继康, 李素娟, 张宇, 陈阜, 张海林. 不同耕作方式麦田土壤温度及其对气温的响应特征: 土壤温度日变化及其对气温的响应. 中国农业科学, 2009, 42: 2592-2600
Chen J K, Li S J, Zhang Y, Chen F, Zhang H L. Characteristics of soil temperature and response to air temperature under different tillage systems: diurnal dynamic of soil temperature and its response to air temperature. Sci Agric Sin, 2009, 42: 2592-2600 (in Chinese with English abstract) [本文引用:1]
[11] 李世清, 李东方, 李凤民, 白红英, 凌莉, 王俊. 半干旱农田生态系统地膜覆盖的土壤生态效应. 西北农林科技大学学报(自然科学版), 2003, 31(5): 21-29
Li S Q, Li D F, Li F M, Bai H Y, Ling L, Wang J. Soil ecological effects of plastic film mulching in semiarid agro-ecological system. J Northwest A&F Univ (Nat Sci Edn), 2003, 31(5): 21-29 (in Chinese with English abstract) [本文引用:1]
[12] 王颖慧, 蒙美莲, 陈有君, 张静, 王朝霞, 崔成龙. 覆膜方式对旱作马铃薯产量和土壤水分的影响. 中国农学通报, 2013, 29(3): 147-152
Wang Y H, Meng M L, Chen Y J, Zhang J, Wang Z X, Cui C L. Effect of different film-covering modes on the yield and soil moisture of dry land tillage potato. Chin Agric Sci Bull, 2013, 29(3): 147-152 (in Chinese with English abstract) [本文引用:1]
[13] 秦舒浩, 张俊莲, 王蒂, 蒲育林, 杜全中. 覆膜与沟垄种植模式对旱作马铃薯产量形成及水分运移的影响. 应用生态学报, 2011, 22: 389-394
Qin S H, Zhang J L, Wang D, Pu Y L, Du Q Z. Effects of different film mulch and ridge-furrow cropping patterns on yield formation and water translocation of rainfed potato. Chin J Appl Ecol, 2011, 22: 389-394 (in Chinese with English abstract) [本文引用:1]
[14] 王殿武, 程东娟, 刘树庆, 谢建治, 吴印宗, 李德平. 高寒半干旱区马铃薯聚垄集肥覆膜技术效应. 干旱地区农业研究, 2001, 19(1): 14-19
Wang D W, Cheng D J, Liu S Q, Xie J Z, Wu Y Z, Li D P. Effect of ridging and fertilization and plastic film covering technique for potato in semiarid region with cold climate and high elevation. Agric Res Arid Areas, 2001, 19(1): 14-19 (in Chinese with English abstract) [本文引用:1]
[15] Tian Y, Su D, Li F, Li X. Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas. Field Crops Res, 2003, 84: 385-391 [本文引用:1]
[16] Wang Q, Zhang E H, Li F M, Li F R. Runoff Efficiency and the Technique of Micro-water Harvesting with Ridges and Furrows, for Potato Production in Semi-arid Areas. Water Resour Manage, 2008, 22: 1431-1443 [本文引用:1]
[17] Ramakrishna A, Tarn H M, Wani S P, Long T D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res, 2006, 95: 115-125 [本文引用:1]
[18] Tian Y, Su D, Li F, Li X. Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas. Field Crops Res, 2003, 84: 385-391 [本文引用:1]
[19] Zhou L M, Li F M, Jin S L, Song Y J. How two ridges and the furrow mulched with plastic film affect soil water. Field Crops Res, 2009, 113: 41-47 [本文引用:1]
[20] 王琦, 张恩和, 李凤民, 王晓凌. 半干旱地区沟垄微型集雨种植马铃薯最优沟垄比的确定. 农业工程学报, 2005, 21(2): 38-41
Wang Q, Zhang E H, Li F M, Wang X L. Optimum ratio of ridge to furrow for planting potato in micro-water harvesting system in semiarid areas. Trans CSAE, 2005, 21(2): 38-41 (in Chinese with English abstract) [本文引用:1]
[21] 田媛, 李凤民, 刘效兰. 半干旱区不同垄沟集雨种植马铃薯模式对土壤蒸发的影响. 应用生态学报, 2007, 18: 795-800
Tian Y, Li F M, Liu X L. Effects of different ridge-furrow planting patterns of potato on soil evaporation in semiarid area. Chin J Appl Ecol, 2007, 18: 795-800 (in Chinese with English abstract) [本文引用:1]
[22] 阿米娜·麦图尔迪, 张弥, 于贵瑞, 韩士杰. 1990-2010年长白山温带针阔叶混交林生长季及积温的变化. 沙漠与绿洲气象, 2013, 7(5): 44-50
Amina Matturdi, Zhang M, Yu G R, Han S J. Variation of the growing season and accumulated temperature for temperate missed forest in Changbai mountains during 1990-2010. Desert Oasis Meteorol, 2013, 7(5): 44-50 (in Chinese with English abstract) [本文引用:1]
[23] 董浩, 陈雨海, 周勋波. 灌溉和种植方式对冬小麦耗水特性及干物质生产的影响. 应用生态学报, 2013, 24: 1871-1878
Dong H, Chen Y H, Zhou X B. Effects of irrigation and planting pattern on winter wheat water consumption characteristics and dry matter production. Chin J Appl Ecol, 2013, 24: 1871-1878 (in Chinese with English abstract) [本文引用:1]
[24] 郑成岩, 于振文, 马兴华, 王西芝, 白洪立. 高产小麦耗水特性及干物质的积累与分配. 作物学报, 2008, 34: 1450-1458
Zheng C Y, Yu Z W, Ma X H, Wang X Z, Bai H L. Water consumption characteristic and dry matter accumulation and distribution in high-yielding wheat. Acta Agron Sin, 2008, 34: 1450-1458 (in Chinese with English abstract) [本文引用:1]