机插条件下低氮密植栽培对“早晚兼用”双季稻产量和氮素吸收利用的影响
陈佳娜, 曹放波, 谢小兵, 单双吕, 高伟, 李志斌, 黄敏, 邹应斌*
湖南农业大学农学院, 湖南长沙410128

* 通讯作者(Corresponding author): 邹应斌, E-mail: ybzou123@126.com, Tel: 0731-84618758

第一作者联系方式: E-mail:can.nana@163.com

摘要

为了缓解长江中下游双季稻区机插双季稻生育期不配套的矛盾, 2014—2015年早晚两季均以常规早稻品种中嘉早17为材料, 在大田栽培条件下研究机插密度(36.4、28.6、19.0穴 m-2)与施氮量(0、110~140、176~189 kg N hm-2)对机插双季稻产量及氮肥利用率的影响。结果表明: 采用“早晚兼用”机插双季稻栽培模式有利于早、晚2季周年高产, 以“高密+高氮”处理产量最高, 2年分别达到16.94 t hm-2和16.99 t hm-2, 但与“高密+低氮”处理的产量差异不显著; 氮肥利用率随氮肥用量增加而下降, 随栽插密度增加而提高, 以“高密+低氮”处理最高, 2年4季分别为62.77%、55.75%、65.82%、64.37%, 比“高密+高氮”处理分别提高12.11%、9.01%、8.49%、2.14%; “高密+低氮”处理与“低密+高氮”处理相比, 群体干物质积累量及辐射利用率均有一定的优势。由此可见, 在此模式下适当增加机插密度, 减少氮肥用量, 既可实现高产, 又能显著提高氮素利用率。采用“早晚兼用”品种搭配模式, 低氮、密植栽培可作为长江中下游双季稻区机插双季稻生产的关键技术。

关键词: 双季稻; 机插密度; 施氮量; 产量; 氮素利用率
Effect of Low Nitrogen Rate Combined with High Plant Density on Yield and Nitrogen Use Efficiency of Machine-transplanted Early-late Season Double Cropping Rice
CHEN Jia-Na, CAO Fang-Bo, XIE Xiao-Bing, SHAN Shuang-Lyu, GAO Wei, LI Zhi-Bin, HUANG Min, ZOU Ying-Bin*
Agronomy College of Hunan Agricultural University, Changsha 410128, China
Abstract

In order to alleviate the contradictions of growth period mating problem of machine-transplanted double cropping rice in Changjiang Rive regions, a field experiment with three nitrogen rates (0, 110-140, and 176-189 kg N ha-1) and three plant densities (36.4, 28.6, and 19.0 hill m-2) was conducted using conventional early variety “Zhongjiazao 17” in both early and late seasons to explore the effects of machine transplanting densities and N application on yield and N recovery efficiency (REN) in 2014-2015. Adopting the same conventional early variety was able to reach the high yield in machine-transplanted early-late season double cropping rice. The treatment of high density (36.4 hills m-2) with high nitrogen rate (176 kg ha-1 in early season, 189 kg ha-1 in late season) had the highest yield of 16.94 t ha-1 in 2014 and 16.99 t ha-1 in 2015, but not significantly higher than the treatment of high density with low nitrogen rate (110 kg ha-1 in early season, 140 kg ha-1 in late season). REN declined with increasing N application and improved with increasing density. The treatment of high density with low nitrogen rate showed the highest REN of 62.77%, 55.75%, 65.82%, 64.37% in early and later season 2014 and 2015, which are 12.11%, 9.01%, 8.49%, and 2.14% higher than the treatment of high density with high nitrogen rate, respectively. The treatment of high density with low nitrogen rate displayed certain advantages of dry matter accumulation and radiation use efficiency compared with the treatment of low density (19.0 hills m-2) with high nitrogen rate. As a result, adopting high planting density and low nitrogen fertilizer could not only achieve high yield, but also significantly improve REN in early-late season double cropping rice. The key technology provided in the study would be available for machine-transplanted double cropping rice cultivation in the Yangtze River regions.

Keyword: Double cropping rice; Machine-transplanting density; N application; Grain yield; Nitrogen use efficiency

面对我国耕地面积的不断减少而粮食需求不断增长的局面, 稳定和增加双季稻种植面积、提高双季稻单产是提高水稻和粮食总产的一条重要途径[1]。长江中下游地区具备种植双季稻的土壤和气候条件, 是我国最重要的水稻生产区域[2]。但随着经济快速发展和农村劳动力大量转移, 双季稻生产区适龄劳动力季节性短缺矛盾日益突出, 劳动力成本迅速上升, 水稻生产迫切需要发展以机插秧为主的种植方式, 以适应稻农对现代稻作技术的要求[3, 4]

近年来, 随着机插秧技术的发展, 机插水稻高产栽培配套技术已成为水稻栽培研究的热点, 前人在机插秧育秧技术[5, 6, 7, 8]、基质配制[9, 10, 11, 12]、养分吸收[13, 14, 15, 16, 17]、群体生长发育[18]等方面做了大量研究, 但大多针对一季稻的, 而针对双季稻的较少。制约双季稻机插秧发展的关键是生长季节紧张, 缺乏适宜机插搭配的晚稻品种。连作晚稻育秧期间气温高, 秧苗生长快, 加之机插秧播种量大, 缩短了晚稻的秧龄期(15 d以内), 增加了机插双季稻品种选择及其搭配的难度。尤其是在规模化种植条件下, 早稻收割和晚稻插秧的农耗时间长(15~20 d), 势必延长晚稻品种的秧龄期, 导致秧苗老化或插秧后早穗的问题, 现有的晚稻品种不适合机插双季稻栽培。因此, 适宜的机插晚稻品种、合理的品种搭配及相关配套栽培技术是实现机插双季稻高产稳产的基础。本研究针对制约双季稻机插秧栽培的品种搭配问题, 探讨“ 早晚兼用(即早稻品种翻秋作晚稻种植)” 品种搭配模式下机插密度和氮肥用量对双季稻光合能力、干物质积累、产量及氮肥利用率的影响, 为长江中下游双季稻区机插双季稻栽培提供理论依据。

1 材料与方法
1.1 试验地点和材料

湖南省浏阳市永安镇平头村, 试验田前作为水稻。土壤pH 6.22, 含有机质41.82 g kg-1 、全氮1.23 g kg-1、全磷0.71 g kg-1、全钾6.56 g kg-1、速效氮131.90 g kg-1、速效磷26.81 g kg-1、速效钾154.91 mg kg-1。供试品种为中嘉早17, 种子由中国水稻研究所提供。

1.2 试验设计

按裂区设计排列, 早、晚2季均以氮肥为主区, 分别为不施氮(N1)、低氮(110~140 kg N hm-2, N2)、高氮(176~189 kg N hm-2, N3)。N2按实时氮肥管理模式(RTNM)[19, 20]施肥, 即在水稻移栽后7 d至抽穗期每隔6 d采用SPAD叶绿素测定仪测定水稻氮素营养状况, 根据测定结果与设定的SPAD阈值确定每次氮肥施用量, 早稻阈值为35, 晚稻为38。低于阈值, 施氮量为30 kg N hm-2 (幼穗分化期施氮量为50 kg N hm-2), 高于阈值则不施氮肥。早、晚两季全生育期施氮量分别为110 kg N hm-2、140 kg N hm-2。N3在N2的基础上早、晚稻分别增施氮肥60%和35%, 即早、晚2季全生育期施氮量分别为176 kg N hm-2、189 kg N hm-2。以机插密度为裂区, 分别为高密(36.4穴 m-2, D1)、中密(28.6穴 m-2, D2)、低密(19.0穴 m-2, D3)。主区面积45 m2, 裂区面积15 m2。早、晚2季不同施氮水平下磷肥和钾肥用量一致, 磷肥作基肥一次性施入, 钾肥分基肥(50%)和穗肥(50%) 2次施用, 早稻磷肥(P2O5)、钾肥(K2O)施用量分别为75 kg P2O5 hm-2、150 kg K2O hm-2, 晚稻为82.5 kg P2O5 hm-2、165 kg K2O hm-2。在移栽前7~10 d (早稻)或收割后(晚稻), 用旋耕机翻耕耘田, 小区间筑土埂并以塑料薄膜覆盖至犁底层, 各小区单排单灌。软盘淤泥育秧, 软盘规格为58 cm × 25 cm, 每盘播芽谷130 g。2014年早稻于3月26日播种, 4月10日移栽, 移栽秧龄为15 d, 晚稻于7月7日播种, 7月24日移栽, 移栽秧龄为17 d。2015年早稻于3月26日播种, 4月15日移栽, 移栽秧龄为20 d, 晚稻于7月7日播种, 7月21日移栽, 移栽秧龄为14 d。采用井关PZ80-25乘坐式高速插秧机(东风井关农业机械有限公司)栽插, 每穴栽插4~5本苗。移栽至返青保持水稻田浅水层, 返青至有效分蘖临界叶龄期进行间歇湿润灌溉, 当田间群体苗数达到计划穗数的85%时排水搁田7~8 d, 以后采用间歇湿润灌溉, 在抽穗期间采用浅水灌溉, 之后干湿交替灌溉, 成熟前7 d断水。采用人工防除杂草, 化学治病虫害, 按照当地植保站的情报防治病虫, 一般早稻用药3次, 晚稻用药4次。

1.3 测定项目与方法

1.3.1 SPAD值 于移栽后7 d至抽穗期每隔6 d用叶绿素仪(Chlorophyll Meter, SPAD-502)测定植株最顶端完全叶的SPAD值, 在叶的上、中、下部分别测定3次, 取平均值作为此叶片的SPAD值, 各小区重复测定10片叶, 取平均值作为小区SPAD值。测定后根据各处理3个重复的平均值与SPAD的设定值决定氮肥施用量, 施肥与SPAD值的测量在同一天进行。

1.3.2 生育期 记载不同处理的齐穗期和成熟期。

1.3.3 干物质、叶面积及氮素指标 在分蘖中期(MT)、孕穗期(BT)、齐穗期(FL)、成熟期(MD), 取每小区代表性植株10穴。将绿色叶片剪下, 用LI-3000C便携式叶面积仪(美国)测定叶面积, 然后将植株地上部各部分于105℃杀青30 min, 70℃下烘至恒重, 测定干物质重。称量后将样品粉碎, 经浓H2SO4-H2O2消化后用荷兰Skalar分析仪器公司生产的连续流动分析仪(SAN++)测定植株地上部各器官的氮含量。

氮素利用率(%) = (施氮肥区植株氮积累量-不施氮肥区植株氮积累量)/施氮量× 100, 氮素吸收率(%) = [施肥区地上部植株氮总积累量/(施肥区施入的氮肥量+不施肥区地上植株氮总积累量)]× 100, 氮肥偏生产力(kg kg-1) = 施肥区籽粒产量/施氮量, 氮素转运量(kg hm-2) = 抽穗期叶(茎鞘)氮素积累量-成熟期叶(茎鞘)氮素积累量, 氮素转运率(%)=氮素转运量/抽穗期叶(茎鞘)氮素积累量× 100, 氮素籽粒生产效率(kg kg-1) = 籽粒产量/总氮积累量, 氮收获指数 = 成熟期籽粒氮素积累量/成熟期植株氮素积累量。

1.3.4 群体辐射利用率 在分蘖中期(MT)、孕穗期(BT)、齐穗期(FL)、齐穗期后15 d (FL-15)、成熟期(MD), 选择晴天、无云(少云)、无风(微风)的中午(11:00— 13:00), 采用Sunscan冠层分析仪(英国Delta公司)测定各个小区离地10 cm以上的冠层透光率, 行、株距方向各测定2次, 辐射截获率(intercepted percent) = 100 × (入射辐射量-冠层下方辐射量)/入射辐射量, 4次辐射截获率的平均值作为该小区的辐射截获率。各个时期截获的辐射量 = 1/2 × (前一个时期的辐射截获率+后一个时期的辐射截获率)× 该时期的入射辐射量; RUE (g MJ-1) = 总的干物质量/各个时期截获辐射量的总和[21]

1.3.5 产量和产量构成 于成熟期, 收割每小区中心5 m2用于测产, 折算为14%含水量的实收产量。沿小区对角线选取10穴用于考种, 手工脱粒后, 用水选法分离实粒和空秕粒, 从实粒中称取3份30 g样品分别计数, 将实粒、空秕粒在70℃下烘至恒重, 计算每穗总粒数、结实率、千粒重。同时调查每小区30穴, 计算单位面积有效穗数。

1.4 数据分析

采用Microsoft Excel 2007整理数据, 用Statistix8.0软件进行数据分析, 用LSD0.05法进行多重比较。

2 结果与分析
2.1 不同密度和施氮量对机插双季稻生育期、太阳辐射利用率、产量及其构成因子的影响

2.1.1 产量 2014年施氮量对早稻和晚稻产量影响均达极显著水平, 机插密度对晚稻产量的影响亦达极显著水平, 但机插密度对早稻产量以及施氮量与机插密度的互作对早、晚2季产量影响均不显著; 2015年施氮量、机插密度以及施氮量与机插密度的互作对早、晚2季产量的影响均达显著或极显著水平(表1)。

表2可知, 2年早稻和晚稻产量均随施氮量和机插密度的增加而增加, 低氮(N2)和高氮(N3)处理的产量显著高于不施氮处理(N1), 除2015年晚稻外, 低氮(N2)与高氮(N3)的产量差异显著; 高密(D1)处理的产量显著高于低密(D3)处理, 但2014年早稻各密度处理间产量差异不显著; 在施氮条件下, 2014年早稻和晚稻的平均产量分别为7.40 t hm-2和8.00 t hm-2, 2015年分别为7.99 t hm-2和7.37 t hm-2, 2014年早稻产量低于晚稻产量, 而2015年则与之相反。

表1 不同施氮量和栽插密度对产量影响的方差分析 Table 1 Analysis of variance of grain yield affected by different N application rates and mechanical transplanting densities

在低氮(N2)条件下, 2014年早稻密植(D1)的产量为7.12 t hm-2, 略低于高氮中密(N3D2)以及高氮低密(N3D3), 但与高氮高密(N3D1)处理间差异不显著。而2014年晚稻和2015年早稻与晚稻在低氮高密(N2D1)处理下的产量均高于高氮低密(N3D3)处理, 产量分别为8.04、8.79和7.75 t hm-2, 分别比高氮低密(N3D3)处理增产1.26%、17.67%和2.92%。总体而言, 在高密(D1)条件下, 施氮(N2、N3)处理间产量差异不显著, 但以N3D1组合产量最高, 2年4季分别为7.84、9.10、9.24和7.75 t hm-2

2.1.2 产量构成 施氮量和机插密度对机插双季稻有效穗数影响显著(表2), 随施氮量和机插密度的增加而增加, 即高氮(N3)显著高于低氮(N2)高于不施氮(N1), 高密(D1)显著高于中密(D2)高于低密(D3); 在高密(D1)条件下, 低氮(N2)处理的有效穗数略低于高氮(N3)处理, 但其差异未达显著水平; 低氮高密(N2D1)较之高氮低密(N3D3), 2年早稻和晚稻的有效穗数均有所增加, 其中2014年晚稻和2015年早稻与晚稻分别显著增加8.66%、20.83%和22.73%。

机插双季稻每穗粒数在不施氮(N1)条件下显著减少, 但不同施氮水平(N2、N3)间差异较小; 同时, 随机插密度增大, 机插双季稻每穗粒数有减少的趋势, 但除2015年晚稻高密(D1)显著低于低密(D3)外, 其他差异不显著; 在同一施氮水平与机插密度条件下, 2014年早稻每穗粒数多于晚稻, 平均相差6粒/穗左右, 2015年早、晚稻每穗粒数相差不大, 表现为晚稻略多于早稻, 年际间也有一定的差异, 与2014年相比, 2015年每穗粒数有所降低。

随着氮肥施用量的增加, 机插双季稻结实率有所降低, 而千粒重未表现出明显的规律; 随着机插密度的增大, 机插双季稻千粒重略有增加, 结实率差异不大; 低氮高密(N2D1)与高氮高密(N3D1)相比, 结实率和千粒重均有不同程度的提高; 结实率和千粒重在早、晚两季间有一定的差异, 总体表现为早稻高于晚稻。

通过产量与产量构成因子的通径分析可知, 除2015年晚稻有效穗数(0.33946* )对产量的总贡献第二外, 2014年早、晚稻和2015年早稻均以有效穗数对产量的总贡献最大, 分别为0.6382* * 、0.8193* * 、0.8207* * 。综上所述, 低氮密植处理获得较高产量主要是因为密植在增加有效穗数的同时对每穗粒数的影响较小, 而减少施氮量还可以提高结实率。

2.1.3 生育期 表2还表明, 中嘉早17无论是作为早稻还是作为晚稻种植, 不同机插密度及施氮量(N2、N3)处理间全生育期相同, 但施氮比不施氮延长4~7 d。与早稻比较, 晚稻全生育期缩短8~9 d, 其中营养生长期缩短约16~18 d, 灌浆结实期反而延长7~9 d。

2.1.4 太阳辐射利用率 2015年机插水稻群体的太阳辐射利用率有随施氮量增加而减小的趋势, 早稻和晚稻均在高氮(N3)水平下显著减小; 机插密度对水稻群体的太阳辐射利用率也有一定影响, 随着机插密度的增大而增大, 但差异不显著; 低氮高密(N2D1)处理早稻和晚稻的辐射利用率分别为2.00 g MJ-1、1.60 g MJ-1, 显著高于高氮高密(N3D1)处理; 与晚稻相比, 早稻群体太阳辐射利用率相对较高。

表2 机插密度与施氮量对机插双季稻生育期、太阳辐射利用率、产量及其构成因子的影响 Table 2 Effects of mechanical transplanting density and nitrogen application level on the growth duration, radiation use efficiency, grain yield, and its components for machine-transplanted double cropping rice
2.2 不同密度与施氮量对机插双季稻干物质积累的影响

2.2.1 干物质积累过程 由图1可知, 机插双季稻在分蘖中期、孕穗期、齐穗期以及成熟期的干物质量均表现为高氮(N3)> 低氮(N2), 高密(D1)> 中密(D2)> 低密(D3)。低氮高密(N2D1)处理与高氮高密(N3D1)处理间干物质差异随着生育进程而逐渐减小, 至成熟期低氮高密(N2D1)处理干物质量仅略低于高氮高密(N3D1), 差异不显著, 但高于高氮低密(N3D3)处理。总体而言, 各处理总干物质生产量与产量表现出相同的趋势。

2.2.2 干物质阶段性积累量及其比例 表3表明, 干物质阶段性积累量的平均值, 移栽至分蘖中期、分蘖中期至孕穗期、孕穗期至齐穗期以及齐穗期至成熟期, 均表现为高氮(N3)处理高于低氮(N2)处理高于不施氮(N1)处理; 不同机插密度间在生育前期(移栽至分蘖中期和分蘖中期至孕穗期)表现为高密(D1)> 中密(D2)> 低密(D3)。

在高密(D1)条件下, 低氮(N2)处理在移栽至分蘖中期和分蘖中期至孕穗期阶段干物质积累量均显著低于高氮(N3)处理, 但在孕穗期至齐穗期和齐穗期至成熟期则表现为高于或者略低于; 低氮高密(N2D1)较之高氮低密(N3D3), 移栽至分蘖中期和分蘖中期至孕穗期干物质积累略低, 但在孕穗期至齐穗期和齐穗期至成熟期的积累量反而较多, 且相差达到显著水平。

图1 机插双季稻不同生育时期干物质积累量
N2、N3分别为110~140、176~189 kg N hm-2; D1、D2、D3分别为36.4、28.6、19.0穴 m-2。A: 2014年早稻; B: 2014年晚稻; C: 2015年早稻; D: 2015年晚稻。MT: 分蘖中期; BT: 孕穗期; FL: 齐穗期; MD: 成熟期。
Fig. 1 Dry matter accumulation of different growth stage of machine-transplanted double cropping rice
N2 and N3 are 110-140 and 176-189 kg N hm-2, respectively. D1, D2, and D3 are 36.4, 28.6, and 19.0 hills m-2, respectively.
A: early rice in 2014; B: later rice in 2014; C: early rice in 2015; D: later rice in 2015. MT: mid-tillering stage; BT: booting stage; FL: full heading stage; MD: maturity stage.

在施氮条件下, 机插双季稻在移栽至分蘖中期、分蘖中期至孕穗期、孕穗期至齐穗期以及齐穗期至成熟期的干物质积累比例依次增大, 分别为10%、20%、30%和40%左右。

表3 机插密度与施氮量对机插双季稻干物质生产的影响 Table 3 Effects of mechanical transplanting density and nitrogen application on the dry matter production for machine-transplanted double cropping rice
2.3 不同机插密度与施氮量对双季稻氮素积累及利用率的影响

2.3.1 氮素积累动态 表4表明, 移栽至分蘖中期以及分蘖中期至孕穗期, 高氮(N3)处理的氮素积累量显著高于低氮(N2)处理, 但随生育进程, 低氮(N2)处理氮素积累量显著增加, 其孕穗期至齐穗期的氮素积累量显著高于高氮(N3)处理, 而齐穗期至成熟期的氮素积累量也表现为高于或者仅略低于高氮(N3)处理; 低氮高密(N2D1)处理的氮素积累量移栽至分蘖中期和分蘖中期至孕穗期显著低于高氮高密(N3D1)处理, 在孕穗期至齐穗期和齐穗期至成熟期显著高于或者略低于N3D1, 至成熟期仍显著低于高氮高密(N3D1)处理, 但与高氮低密(N3D3)处理间相差不大。

各处理氮素积累量最多的时期为分蘖中期至孕穗期或者孕穗期至齐穗期, 总体而言, 分蘖中期至齐穗期为机插双季稻群体吸氮高峰期, 氮素积累量约占整个生育期氮素积累量的60%~80%。

2.3.2 氮素利用效率 随着施氮量的增加, 机插双季稻群体氮素利用率、氮素吸收率、氮肥偏生产力、氮素转运率、氮素籽粒生产率以及氮收获指数均不同程度地降低(表5); 氮素利用率、氮吸收率、氮肥偏生产力、氮转运量以及氮素转运率有随机插密度的增大而增大的趋势, 但氮素籽粒生产率和氮收获指数未表现出明显的规律。低氮高密(N2D1)处理较之高氮高密(N3D1)处理, 其氮素利用率、氮素吸收率以及氮素转运率有所提高, 但未达显著水平; 而氮肥偏生产力和氮收获指数则显著提高, 其中氮肥偏生产力提高9.43~29.90 kg kg-1; 氮素籽粒生产效率略有提高, 但两年提高程度不同, 2014年差异未达显著水平, 2015年则显著提高。

2014年早稻平均氮素利用率、氮素吸收率、氮肥偏生产力分别为56.46%、72.45%、55.18 kg kg-1, 分别比晚稻高13.62%、14.40%、11.79%, 2015年也表现为早稻高于晚稻; 2014年氮素转运量、氮素转运率以及氮素籽粒生产效率均表现为早稻低于晚稻, 而2015年则刚好相反, 与产量规律表现一致。

表4 机插密度与施氮量对机插双季稻氮素积累的影响 Table 4 Effects of mechanical transplanting density and nitrogen application on N accumulation for mechanical transplanted double-cropping rice
表5 机插密度与施氮量对机插双季稻氮素利用的影响 Table 5 Effects of mechanical transplanting density and nitrogen application on N recovery efficiency for mechanical transplanted double-cropping rice
3 讨论
3.1 不同机插密度和施氮量对“ 早晚兼用” 机插双季稻产量的影响

栽插密度与施氮量是水稻群体发育的关键调控技术, 对水稻产量有决定性的影响。本试验条件下, 高密(36.4穴 m-2)+高氮(早稻176 kg hm-2, 晚稻189 kg hm-2)产量最高, 但与高密(36.4穴 m-2)+低氮(早稻110 kg hm-2, 晚稻140 kg hm-2)产量差异不显著。同时高密(36.4穴 m-2)+低氮(早稻110 kg hm-2, 晚稻140 kg hm-2)与低密(19.0穴 m-2)+高氮(早稻176 kg hm-2, 晚稻189 kg hm-2)处理相比, 其产量、后期干物质积累量以及太阳辐射利用率均有一定的优势。说明水稻生产中, 适当增加栽插密度, 氮肥用量可减少37.3%~25.9%而不减产。

水稻物质生产与积累在决定水稻产量的同时也影响着水稻对氮素的吸收和利用[22], 本研究表明, 高密(36.4穴 m-2)+低氮(早稻110 kg hm-2, 晚稻140 kg hm-2)处理的机插双季稻群体其物质生产与积累特性可以概括为, 在移栽至分蘖中期至孕穗期具有适宜物质积累优势, 但占全生育期总积累量的比例较少; 孕穗期至齐穗期群体物质积累具绝对优势, 积累量显著增加; 齐穗后干物质积累比例约占40%左右, 与凌启鸿等[23]认为的高产水稻的特点相似。

3.2 “ 早晚兼用” 机插双季稻低氮、密植栽培的氮高效利用

水稻氮肥利用率与种植季节、栽培体系、氮肥运筹、栽插密度以及品种本身特性等有关, 适量的氮肥及其合理的种植密度可以获得较高的产量和氮肥利用率, 同时具有环境效应[24, 25, 26, 27, 28]。水稻实时实地氮肥管理是Peng等[19, 20]根据水稻叶片SPAD测定值与单位面积叶片含氮量呈极显著正相关提出的, 近年来, 该技术已经在生产上得到了广泛应用。大量的研究结果表明实时实地施肥管理模式能增加作物的产量, 减少肥料的投入, 增加肥料的利用率[28, 29, 30]。本试验中, 在实时氮肥处理(早稻110 kg hm-2, 晚稻140 kg hm-2)下, 机插双季稻群体氮素利用率、氮吸收率、氮肥偏生产力、氮素转运率、氮素籽粒生产率以及氮收获指数均高于高氮处理(早稻176 kg hm-2, 晚稻189 kg hm-2)。同时不同机插密度处理下, 其氮素利用率、氮吸收率、氮肥偏生产力、氮转运量以及氮素转运率均表现为高密处理高于低密处理。总之, 适当增加栽插密度及减少氮肥用量, 既可以实现水稻高产又能提高氮素利用率, 这与前人的研究结果一致[27, 31]。说明在高密条件下, 机插水稻在生育前期的氮素积累量增加, 后期向籽粒转运量也相应增加, 因而氮肥利用率提高, 由此可知, 在水稻生产中, 氮肥用量的增加并不能使水稻相应比例地增加吸收量, 多余部分并未对产量形成贡献, 然而通过增加单位面积栽插穴数来提高群体数量可以提高氮素积累总量, 减低氮素流失, 进而提高氮素利用率。

3.3 “ 早晚兼用” 机插双季稻品种搭配模式

现有的双季晚稻品种大多生育期过长, 不能适用于秧龄期较短的机插双季稻生产, 尤其是不能满足规模化双季稻生产的需要[1]。本试验中, 双季稻机插秧条件下“ 早晚兼用” 模式2014年和2015年最高产量分别为16.94 t hm-2和16.99 t hm-2, 且两年晚稻均在9月11日左右齐穗, 属安全齐穗范畴。因此, “ 早晚兼用” 模式解决了机插晚稻因秧龄期短而导致生育期延后不能安全齐穗的问题, 并且能在此基础上获得高产。在目前没有特早熟晚稻品种可供选择的情况下, 机插双季稻采用“ 早晚兼用” 品种搭配模式是可行的。但本试验, “ 早晚兼用” 搭配模式中只验证了超级早稻品种中嘉早17, 类似的早稻品种还有待进一步试验评价, 而且本试验的 “ 早晚兼用” 搭配模式的定义是早、晚稻同一品种, 如果早稻和晚稻采用不同类型早稻品种搭配, 将“ 早晚兼用” 搭配模式的定义扩展是否具有可行性还有待近一步研究。此外, 中嘉早17作晚稻种植, 在营养生长期缩短16~18 d的情况下仍不减产、甚至增产的机理可以作为育种家选育营养生长期短但产量高的短生育期晚稻品种的依据。

4 结论

“ 早晚兼用” 型品种搭配模式在机插双季稻中具备高产可行性。在此模式下适当增加机插密度, 减低氮肥用量, 既可大幅度增加有效穗来实现高产, 又能显著提高氮素利用率。长江流域双季稻区, 可采用“ 早晚兼用” 型品种搭配模式, 并把低氮密植作为“ 早晚兼用” 型机插双季稻高产高效栽培的关键技术。

The authors have declared that no competing interests exist.

参考文献
[1] 朱德峰, 陈惠哲, 徐一成. 我国双季稻生产机械化生产制约因子与发展对策. 中国稻米, 2013, 19(4): 1-4
Zhu D F, Chen H Z, Xu Y C. The confinement factors and development counter measures of mechanical production of double cropping rice in China. China Rice, 2013, 19(4): 1-4 (in Chinese) [本文引用:2]
[2] 邹应斌. 长江流域双季稻栽培技术发展. 中国农业科学, 2011, 44: 254-262
Zou Y B. Development of cultivation technology for double cropping rice along the Changjiang River Valley. Chin J Rice Sci, 2011, 44: 254-262 (in Chinese with English abstract) [本文引用:1]
[3] 朱德峰, 陈惠哲. 水稻机插秧发展与粮食安全. 中国稻米, 2009, 20(6): 4-7
Zhu D F, Chen H Z. Development of mechanical transplanting rice and food safety. China Rice, 2009, 20(6): 4-7 (in Chinese) [本文引用:1]
[4] 张文毅, 袁钊和, 吴崇友, 金梅. 水稻种植机械化进程分析研究: 水稻种植机械化由快速向高速发展的进程. 中国农机化, 2011, (1): 19-22
Zhang W Y, Yuan Z H, Wu C Y, Jin M. Research on the process of rice planting mechanization: Process of rice planting mechanization developing fastly to rapidly. Chin Agric Mechanization, 2011, (1): 19-22 (in Chinese with English abstract) [本文引用:1]
[5] 张祖建, 王君, 郎有忠, 于林惠, 薛艳凤, 朱庆森. 机插稻超秧龄秧苗的生长特点研究. 作物学报, 2008, 34: 297-304
Zhang Z J, Wang J, Lang Y Z, Yu L H, Xue Y F, Zhu Q S. Growing characteristics of rice seedlings of over-optimum age for mechanical transplanting. Acta Agron Sin, 2008, 34: 297-304 (in Chinese with English abstract) [本文引用:1]
[6] 何文洪, 陈惠哲, 朱德峰, 徐一成, 林贤青, 张玉屏. 不同播种量对水稻机插秧苗素质及产量的影响. 中国稻米, 2008, (3): 60-62
He W H, Chen H Z, Zhu D F, Xu Y C, Lin X Q, Zhang Y P. Effects of different seeding rate on yield and seeding quality of mechanical transplanting rice. China Rice, 2008, (3): 60-62 (in Chinese) [本文引用:1]
[7] 沈建辉, 邵文娟, 张祖建, 杨建昌, 曹卫星, 朱庆森. 水稻机插中苗双膜育秧落谷密度对苗质和产量影响的研究. 作物学报, 2004, 30: 906-911
Shen J H, Shao W J, Zhang Z J, Yang J C, Cao W X, Zhu Q S. Effects of sowing density on quality of medium-seedling nursed with two-layer plastic film and grain yield in mechanical transplanting rice. Acta Agron Sin, 2004, 30: 906-911 (in Chinese with English abstract) [本文引用:1]
[8] 李旭毅, 池忠志, 姜心禄, 郑家国, 郭翔. 农艺措施对成都平原两熟区机插超级稻长龄秧苗生长的影响. 作物学报, 2012, 38: 1544-1550
Li X Y, Chi Z Z, Jiang X L, Zheng J G, Guo X. Effects of agronomic measures on mechanical transplanting long-age seedlings of super rice in rapeseed (wheat)-rice planting area of Chengdu Basin. Acta Agron Sin, 2012, 38: 1544-1550 (in Chinese with English abstract) [本文引用:1]
[9] 钱银飞, 张洪程, 李杰, 吴文革, 张强, 陈烨, 郭振华, 戴其根, 霍中洋, 许轲. 不同基本苗配置对机插稻产量和品质的影响. 华北农学报, 2009, 24(增刊1): 316-322
Qian Y F, Zhang H C, Li J, Wu W G, Zhang Q, Chen Y, Guo Z H, Dai Q G, Huo Z Y, Xu K. Effects of basic seedling and Its components on yield and quality for machine-transplanted rice. Acta Agric Boreali-Sin, 2009, 24(suppl-1): 316-322 (in Chinese with English abstract) [本文引用:1]
[10] 张琳, 吴华聪, 张数标, 陈金水. 基本苗数对机插双晚杂交稻产量的影响. 湖南农业科学, 2010, (3): 30-31
Zhang L, Wu H C, Zhang S B, Chen J S. Effects of different basic seeding numbers on yield of mechanical transplanted double season late Hybrid Rice. Hunan Agric Sci, 2010, (3): 30-31 (in Chinese with English abstract) [本文引用:1]
[11] 李世峰, 刘蓉蓉, 吴九林. 不同播量与移栽密度对机插水稻产量形成的影响. 作物杂志, 2008, (1): 71-74
Li S F, Lui R R, Wu J L. Effects of different sowing rates and transplanting densities on yield formation of machine- transplanted rice. Crops, 2008, (1): 71-74 (in Chinese with English abstract) [本文引用:1]
[12] 王旭辉, 杨祥田, 丁璇, 李克才, 何贤彪, 马池芳, 陈君. 早稻机插秧的密度和本数对产量及其相关性状的影响. 杂交水稻, 2012, 27(3): 52-54
Wang X H, Yang X T, Ding X, Li K C, He X B, Ma C F, Chen J. Effects of planting space and seedlings per hill on yield-related characteristics in mechanized transplanting of early rice. Hybrid Rice, 2012, 27(3): 52-54 (in Chinese) [本文引用:1]
[13] 徐一成, 朱德峰, 陈惠哲. 施氮量对免耕机插水稻产量形成及氮素利用的影响. 中国稻米, 2014, 20(6): 30-34
Xu Y C, Zhu D F, Chen H Z. Effects of nitrogen application on grain yield and nitrogen utilization of no-tillage machine transplanted rice. China Rice, 2014, 20(6): 30-34 (in Chinese with English abstract) [本文引用:1]
[14] 霍中洋, 魏海燕, 张洪程, 龚振恺, 戴其根, 许轲. 穗肥运筹对不同秧龄机插超级稻宁粳1号产量及群体质量的影响. 作物学报, 2012, 38: 1460-1470
Huo Z Y, Wei H Y, Zhang H C, Gong Z K, Dai Q G, Xu K. Effect of panicle nitrogen fertilizer management on yield and population quality in mechanical transplanted super rice Ningjing 1 with different seedling ages. Acta Agron Sin, 2012, 38: 1460-1470 (in Chinese with English abstract) [本文引用:1]
[15] 沈建辉, 邵文娟, 张祖建, 景启坚, 杨建昌, 陈文林, 朱庆松. 苗床落谷密度、施肥量和秧龄对机插稻苗质及大田产量的影响. 作物学报, 2006, 32: 402-409
Shen J H, Shao W J, Zhang Z J, Jing Q J, Yang J C, Chen W L, Zhu Q S. Effects of sowing density, fertilizer amount in seedbed and seeding age on seedling quality and grain yield in paddy field for mechanical transplanting rice. Acta Agron Sin, 2006, 32: 402-409 (in Chinese with English abstract) [本文引用:1]
[16] 孙永健, 马均, 孙园园, 杨志远, 徐徽, 熊洪, 徐富贤. 施氮量和株距对机插杂交稻结实期养分转运和产量的影响. 核农学报, 2014, 28: 1510-1520
Sun Y J, Ma J, Sun Y Y, Yang Z Y, Xu H, Xiong H, Xu F X. Effects of nitrogen application rates and plant spacing on nutrient translocation during filling stage and yield of mechanical- transplanted hybrid rice. J Nucl Agric Sci, 2014, 28: 1510-1520 (in Chinese with English abstract) [本文引用:1]
[17] 于林惠, 李刚华, 徐晶晶, 杨娟娟, 王绍华, 刘正辉, 王强盛, 凌启鸿, 丁艳锋. 机插粳稻氮磷钾吸收分配特征. 作物学报, 2012, 38: 707-716
Yu L H, Li G H, Xu J J, Yang J J, Wang S H, Liu Z H, Wang Q S, Ling Q H, Ding Y F. Characteristics of uptake of nitrogen, phosphorus, and potassium and partitioning in mechanical transplanting Japonica rice. Acta Agron Sin, 2012, 38: 707-716 (in Chinese with English abstract) [本文引用:1]
[18] 于林惠, 李刚华, 徐晶晶, 凌启鸿, 丁艳锋. 基于高产示范方的机插水稻群体特征研究. 中国水稻科学, 2012, 26: 451-456
Yu L H, Li G H, Xu J J, Ling Q H, Ding Y F. Population characteristics of machine-transplanted japonica rice based on high-yield demonstration fields. Chin J Rice Sci, 2012, 26: 451-456 (in Chinese with English abstract) [本文引用:1]
[19] Peng S B, Garcia F V, Laza R C, Sanico A L, Visperas R M, Cassman K G. Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice. Field Crops Res, 1996, 47: 243-252 [本文引用:2]
[20] Peng S B, Laza R C, Garcia F V, Cassman K G. Chlorophyll meter estimates leaf area-based nitrogen concentration of rice. Commun Soil Sci Plant Anal, 1995, 26: 927-935. [本文引用:2]
[21] Zhang Y B, Tang Q Y, Zou Y B, Li D Q, Qin J Q, Yang S H, Chen L J, Xia B, Peng S B. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res, 2009, 114: 91-98 [本文引用:1]
[22] 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 杭杰, 马群, 张胜飞, 张庆, 刘艳阳. 不同水稻氮利用效率基因型的物质生产与积累特性. 作物学报, 2007, 33: 1802-1809
Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Hang J, Ma Q, Zhang S F, Zhang Q, Liu Y Y. Characteristics of matter production and accumulation in rice genotypes with different N use efficiency. Acta Agron Sin, 2007, 33: 1802-1809 (in Chinese with English abstract) [本文引用:1]
[23] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. p 57
Ling Q H. Crop Population Quality. Shanghai: Shanghai Scientific and Technical Publishers, 2000. p 57 (in Chinese) [本文引用:1]
[24] Xin P X, Ping H, Shi C Z, Shao J Q, Adrian M, Wei Z. Quantification of yield gap and nutrient use efficiency of irrigated rice in China. Field Crops Res, 2016, 186: 58-65 [本文引用:1]
[25] Elliott R D Y, Nicolas B, Naab J, Joël H , Expedit E A, Euloge K A. Reducing soil CO2 emission and improving upland rice yield with no-tillage, straw mulch and nitrogen fertilization in northern Benin. Soil Tillage Res, 2016, 156: 44-53 [本文引用:1]
[26] Hamidul I, Altaf H. Effect of fertilization and planting density on the yield of two varieties of fine rice. Pak J Biol Sci, 2002, 5: 513-516 [本文引用:1]
[27] 谢小兵, 周雪峰, 蒋鹏, 陈佳娜, 张瑞春, 伍丹丹, 曹放波, 单双吕, 黄敏, 邹应斌. 低氮密植栽培对超级稻产量和氮素利用率的影响. 作物学报, 2015, 41: 1591-1602
Xie X B, Zhou X F, Jiang P, Chen J N, Zhang R C, Wu D D, Cao F B, Shan S L, Huang M, Zou Y B. Effect of low nitrogen rate combined with high plant density on grain yield and nitrogen use efficiency in super rice. Acta Agron Sin, 2015, 41: 1591-1602 (in Chinese with English abstract) [本文引用:2]
[28] Janaki P, Thiyagarajan T M. Evaluation of SPAD guided N management in transplanted rice: Effect of planting density and nitrogen interaction on chlorophyll meter values and N requirement. Adv Plant Sci, 2003, 16: 191-198 [本文引用:2]
[29] 刘立军, 桑大志, 刘翠莲, 王志琴, 杨建昌, 朱庆森. 实时实地氮肥管理对水稻产量和氮素利用率的影响. 中国农业科学, 2003, 36: 1456-1461
Liu L J, Sang D Z, Liu C L, Wang Z Q, Yang J C, Zhu Q S. Effects of real-time and site-specific nitrogen managements on rice yield and nitrogen use efficiency. Sci Agric Sin, 2003, 36: 1456-1461 (in Chinese) [本文引用:1]
[30] 贺帆, 黄见良, 崔克辉, 曾建敏, 徐波, 彭少兵, Buresh R J. 实时实地氮肥管理对水稻产量和稻米品质的影响. 中国农业科学, 2007, 40: 123-132
He F, Huang J L, Cui K H, Zeng J M, Xu B, Peng S B, Buresh R J. Effect of real-time and site-specific nitrogen management on rice yield and quality. Sci Agric Sin, 2007, 40: 123-132 (in Chinese with English abstract) [本文引用:1]
[31] 陆秀明, 黄庆, 刘怀珍, 张彬, 李惠芬, 邹积祥. 机插超级稻在不同施肥水平和不同插植密度下的生育特性及产量表现. 中国农学通报, 2014, 30(21): 152-157
Lu X M, Huang Q, Liu H Z, Zhang B, Li H F, Zou J X. The performance of yield and growth characteristics in different fertilizer levels and different transplanting densities of super mechanical transplanting rice. Chin Agric Sci Bull, 2014, 30(21): 152-157 (in Chinese with English abstract) [本文引用:1]