第一作者联系方式: E-mail: 782916363@qq.com
旨在探明中籼水稻品种改良过程中米质变化特点以及施氮量对其产量和品质的影响。以江苏省近70年来生产上广泛应用的12个代表性中籼水稻品种(含杂交稻组合)为材料, 依据应用年代将其分为20世纪40—50年代、60—70年代、80—90年代和2000年以后(超级稻) 4个类型, 设置零氮(0N, 全生育期不施氮)、中氮(MN, 全生育期施氮210 kg hm-2)和高氮(HN, 全生育期施氮300 kg hm-2) 3个施氮水平, 测定了产量和稻米品质诸性状。结果表明, 随品种的改良, 中籼水稻品种的产量显著提高, 整精米率、垩白度、长宽比、直链淀粉含量、胶稠度、蛋白质组分和淀粉黏滞特性等显著改善, 但现代品种的垩白度仍然较高。在3种施氮水平下, 超级稻以HN的产量最高, 其他年代品种以MN产量最高或MN与HN的产量差异不显著。随施氮量增加, 稻米的蛋白质含量和垩白度增加, 崩解值降低, 消减值增大, 稻米的食味品质降低。在HN下稻米中K、P、S、Ca、Mg等营养元素含量也较0N或MN下降低。以上结果说明, 中籼水稻品种改良显著提高了产量, 改善了稻米品质。总体上, 增施氮肥特别是高量施用氮肥会降低稻米品质。如何通过氮肥的优化运筹实现水稻高产优质的协调发展是亟待研究的问题。
Understanding the changes in grain quality and its response to nitrogen (N) fertilizer during the improvement of crop varieties has great significance in both crop breeding and cultivation. This study aimed to investigate the changes in grain yield and quality during the improvement of mid-season indica rice varieties and the effect of N fertilizer application on the quality. Twelve representative mid-season indicarice varieties (including hybrid combinations) grown in Jiangsu Province during the last 70 years were used with three N application treatments: 0 kg N ha-1 (zero N, 0N), 210 kg N ha-1 (medium amount of N, MN), and 300 kg N ha-1 (high amount of N, HN). These varieties were divided into four groups, including 1940-1950s, 1960-1970s, 1980-1990s, and 2000-2010s (super rice), according to their application times. With the variety improvement, grain yield was significantly increased, and the head rice percentage, chalkiness, ratio of length to width, amylose content, gel consistency, protein components, and rapid viscosity analyzer (RVA) pasting properties were all significantly improved. However, chalkiness for modern varieties was still high. Grain yield was the highest in HN for super rice varieties, and in MN, for other varieties or no significant difference between MN and HN. With the increase in N application, protein content and chalkiness increased, taste quality decreased which was evidenced by the reduction in breakdown values and the increase in setback values. The contents of K, P, S, Ca, and Mg in the head rice decreased in HN compared with those in 0N or MN. The results demonstrate that the improvement of mid-season indicarice varieties markedly improves both grain yield and quality. Generally, increasing N fertilizer application especially up to the HN level could decrease rice quality. How to increase both grain yield and quality through optimizing N management is still a question to be studied.
水稻是我国最主要的粮食作物, 约有40%以上的人口以稻米为主食[1]。长江中下游地区是我国水稻主产区, 该区域稻田种植制度多样, 双季稻和单季中、晚稻都有, 不少地区籼、粳并存。在各品种类型中, 以中籼稻所占比例最大[2, 3]。近70年来, 我国水稻品种的改良经历了高秆、矮秆、半矮秆(含半矮秆杂交稻)、超级稻等发展过程[1]。品种的改良, 极大地促进了我国乃至世界水稻产量的提高[4, 5]。以往虽对水稻品种改良过程中的株型和产量变化特点研究较多[1, 6, 7, 8, 9], 但有关中籼水稻品种改良过程中稻米品质变化特点的研究甚少。
除品种改良外, 栽培技术的进步, 尤其是氮素化学肥料的施用对水稻产量的提高也作出了重要贡献[10, 11]。已有研究表明, 适量施用氮肥可以增加产量和提高稻米品质, 过多施用氮肥不仅会增加生产成本和降低氮肥利用效率, 而且会降低产量和品质, 污染环境[12, 13]。但是, 有关施氮量对不同年代中籼水稻品种稻米品质的影响, 缺乏研究。
探明中籼水稻品种改良过程中稻米品质变化及其对施氮量响应的特点, 对于指导高产优质育种和栽培具有重要意义。因此, 本试验以江苏省近70年来在生产上大面积推广应用的12个具有代表性的中籼水稻品种为材料, 系统研究了不同氮肥水平对其产量和米质的影响, 以期为水稻高产优质育种和栽培提供依据。
试验于2012— 2013年在江苏省里下河地区农业科学研究所扬州试验基地进行, 选取江苏省近70年来大面积推广种植的12个代表性中籼稻品种为材料(表1)。根据各品种的株型及其应用年份划分为4个类型, 即20世纪40— 50年代、60— 70年代、80— 90年代和2000年以后(2000— 2010s为3个超级稻品种, 均已通过农业部认定)。各品种在扬州均能正常抽穗结实。前茬作物为小麦, 耕层含有机质2.06%、有效氮103.2 mg kg-1、速效磷30.3 mg kg-1、速效钾78.5 mg kg-1。为保证各品种的抽穗期尽可能一致, 采用分期播种。1940— 1950s品种5月25日播种, 1960— 1970s品种5月18日播种, 其余品种于5月9日播种, 6月14日移栽, 株行距为13.3 cm × 23.3 cm, 常规稻双本栽插, 杂交稻单本栽插。各品种的抽穗期为8月23— 27日。
采用裂区设计, 以氮肥处理为主区, 品种为裂区。设置零氮(0N)、中氮(MN)、高氮(HN) 3种氮肥处理, 0N即全生育期不施氮肥, MN和HN分别为全生育期施氮210 kg hm-2和300 kg hm-2。所施氮肥折合为尿素按基肥∶ 蘖肥∶ 穗肥 = 2∶ 4∶ 4施用。小区面积为18 m2, 随机区组排列, 重复3次。移栽前施用过磷酸钙(含P2O513%) 300 kg hm-2和氯化钾(含K2O 50%) 200 kg hm-2。按照常规高产栽培管理田间水分, 且全生育期内严格控制田间的病虫草害。
1.2.1 考种与计产 于收获前1 d, 从每个小区按平均穗数取12穴用于脱粒考种, 测定每穗粒数、结实率、千粒重等产量构成因素。除边行外, 实收各小区100穴计产。
1.2.2 稻米品质的测定 测产的稻谷经晒干去杂后风干存放3个月, 待其理化性质稳定后测定稻米品质。测定前统一用NP4350型风选机等风量风选。参照中华人民共和国国家标准《GB/T17891-1999优质稻谷》[14, 15]测定糙米率、精米率、整精米率、垩白粒率、垩白大小、垩白度、胶稠度、直链淀粉含量。
1.2.3 稻米蛋白组分的测定 参照陈毓荃的方法[16], 分别用水、10% NaCl、75% 乙醇、0.2% NaOH溶液为溶剂, 提取精米中清蛋白、球蛋白、醇溶蛋白及谷蛋白。加浓硫酸, 以H2O2为催化剂消煮, 用陈因[17]的方法测定以上4种蛋白组分的含量。用凯氏定氮法测定稻米的全氮含量, 乘以5.95的转换系数即为蛋白质含量。
1.2.4 稻米矿质元素的测定 将精米磨成粉状, 采用微波消解(CEM微波消解仪, 美国), 用ICP仪(美国热电)测定K、P、S、Mg、Ca、Na、Fe、Mn、Zn、Cu等矿质元素含量。
1.2.5 稻米淀粉黏滞特性的测定 采用澳大利亚Newport Scientific仪器公司生产的Super 3型RVA (rapid viscosity analyzer), 按AACC (美国谷物化学家协会)规程(1995-61-02)快速测定稻米淀粉的黏滞特性, 并用其配套软件TWC (thermal cycle for windows)分析数据。米粉过百目筛, 含水量为12.00%时称取3.00 g样品加25.00 g蒸馏水。测定时间为12.5 min, 在此过程中罐内温度先在50℃保持1 min, 然后上升到95℃ (3.8 min)保持2.5 min, 最后再降至50℃ (3.8 min)保持1.4 min, 温度变化速率为11.84℃ min-1。搅拌器的转速在最初10 s内为960转 min-1, 此后保持在160转 min-1。稻米淀粉RVA谱用最高黏度、热浆黏度、最终黏度、崩解值及消减值等特征值表示, 单位为cP (centiPoise)。
采用Microsoft Excel 2013和SAS软件处理数据与统计分析, SigmaPlot 10.0绘图。因两年的试验结果趋势基本一致, 故除产量外, 其他试验结果以两年的平均值表示。
由图1可知, 1940— 1950s品种、1960— 1970s品种、1980— 1990s品种和2000— 2010s品种两年的平均产量, 在0N水平下分别为3.48、5.18、6.47和7.04 t hm-2; 在MN水平下分别为4.77、6.83、8.47和9.16 t hm-2; 在HN水平下分别为4.57、6.87、8.34和10.10 t hm-2。3种施氮水平下, 产量均随着品种的改良逐步提升。从0N到MN, 各类型中籼水稻品种的产量均显著增加; 从MN到HN, 除2000— 2010s的超级稻品种仍表现出显著增产趋势外, 其余品种的产量没有显著增加, 甚至有减产趋势, 表明2000— 2010s的现代品种比早期品种有更好的耐肥性(图1)。
糙米率在品种间有一定的差异, 在3种施氮水平间并无显著差异。说明施氮量对不同年代中籼水稻糙米率的影响很小。总体上, 精米率和整精米率在3种氮水平下均随着品种的改良呈逐渐增加的趋势, 尤其在1940— 1990s年代间增加更为明显; 1940— 1950s精米率为58.41%, 1980— 1990s则为70.24%, 增加了11.83个百分点; 整精米率在1940— 1990s间从32.42%提高到58.25%, 增加了25.83个百分点。整精米率在不同品种间有显著差异, 施氮量对整精米率的影响也因品种而异, 1940— 1950s和1960— 1970s品种在MN水平下最高, 1980— 1990s和2000— 2010s品种在HN水平下最高(表2)。
在3个施氮水平下, 垩白粒率和垩白度均随品种改良显著降低, 随着施氮量的增加而增加。与0N水平相比, 垩白粒率和垩白度在MN水平下分别增加了7.29和14.34个百分点, HN水平下分别增加了15.34和30.27个百分点。说明增施氮肥不利于中籼水稻品种外观品质的提高。随着中籼水稻品种改良, 稻米的长宽比逐渐增加, 施氮量对稻米的长宽比无显著影响(表3)。
稻米蛋白质含量和直链淀粉含量随着品种更替呈逐渐下降趋势(表4)。胶稠度以早期育成的品种较低, 现代品种较高。在不同氮肥水平间比较, 直链淀粉含量和胶稠度随施氮量的增加逐渐降低, 蛋白质含量则随施氮量的增加而增加。糊化温度在中籼水稻改良过程中无显著变化, 氮肥水平对其亦无显著影响(表4)。
2000— 2010s品种与1940— 1950s品种相比, 清蛋白和谷蛋白的含量显著上升, 醇溶蛋白的含量显著下降, 球蛋白则在品种改良过程中无明显的变化。各蛋白组分含量均随施氮量的增加而增加(表5)。
稻米中K、P、S、Mg、Ca、Na、Fe、Mn和Cu含量, 1940— 1950s品种低于其他年代品种, 在1960— 1970s、1980— 1990s和2000— 2010s间差异很小(图2)。稻米Zn含量以1960— 1970s和1980— 1990s品种较高, 1940— 1950s和2000— 2010s品种较低。随施氮量的增加, 各年代中籼水稻品种精米中矿质元素含量均表现出不同程度的下降(图2)。表明除氮元素外, 增施氮肥不利于中籼水稻品种精米中矿质元素的积累。
在中籼水稻品种改良过程中, 最高黏度无明显变化规律; 热浆黏度、最终黏度和消减值总体呈下降趋势, 崩解值则大致呈上升趋势, 其中2000— 2010s现代品种的热浆黏度、最终黏度和消减值要显著低于1940— 1950s早期品种, 而崩解值则显著高于1940— 1950s早期品种(表6), 表明随着品种改良稻米的食味品质得到改善。在3种氮肥水平下, 大多数品种的崩解值随着施氮量的增加而下降, 消减值随施氮量的增加而上升(表6), 表明增施氮肥不利于提高稻米食味品质。与早期品种相比, 现代品种稻米淀粉黏滞性的特征值在不同氮肥水平下表现出更大的波动, 表明现代品种的食味品质对氮肥的响应更加敏感。
有研究认为, 水稻优质与高产是一对矛盾, 一般优质的品种难以高产, 高产的品种少优质[18, 19, 20]。本研究则表明, 在近70年里, 随品种的改良, 产量不断增加, 稻米的加工品质、外观品质、蒸煮食味品质均有不同幅度改善。表明通过品种的改良可以实现水稻优质与高产的协调发展。
稻米淀粉黏滞性能反映米饭的口感和质地, 是评价食味品质的重要指标。以往研究表明, 热浆黏度、消减值与食味性状呈极显著负相关, 崩解值和食味性状呈极显著正相关; 具有较低的热浆黏度和消减值、较高的崩解值的稻米, 其口感较好[21, 22, 23]。本研究表明, 随品种的改良, 淀粉热浆黏度和消减值降低、崩解值增大, 表明品种改良提高了稻米的食味品质。不仅如此, 本研究还观察到, 随品种改良, 稻米蛋白质中的清蛋白和谷蛋白的含量显著上升, 醇溶蛋白的含量显著下降。一般认为, 清蛋白和谷蛋白中含有多种必需氨基酸, 具有较高的营养价值, 而醇溶蛋白则不易被人体消化吸收[24, 25], 因此品种改良改善了稻米的营养品质。
但本研究观察到, 现代高产品种的垩白度仍然较高, 多数品种的垩白度> 5%。稻米的垩白度越高, 稻米的透明度就越低, 加工时就越易破碎[26, 27, 28]。本研究结果表明, 在品种改良过程中, 稻米的长宽比逐渐增加, 垩白度逐渐下降, 稻米长宽比与垩白度呈显著负相关。说明增加稻米的长宽比, 可以显著降低稻米的垩白度。因此, 在水稻育种工作中, 在保持粒重相同条件下, 优先选用籽粒较长、粒宽较小的品种, 有望进一步降低稻米的垩白度, 提高稻米的外观品质。
氮肥是决定作物产量的最重要因子。氮肥施用量的增加对水稻产量的提高具极其重要的作用[10, 11]。但是, 氮肥施用量过多已成为我国水稻生产上的突出问题[12, 13]。本研究虽然没有观察到高量施用氮肥(HN, 300 kg hm-2)对现代高产品种特别是超级稻品种的产量和整精米率产生不利影响, 但观察到增加施用氮肥特别是HN水平会显著降低稻米的某些品质性状, 主要表现在以下两个方面。
一是增施氮肥降低了稻米中营养元素。稻米中K、P、S、Mg、Ca、Na、Fe、Mn、Zn、Cu等是人类必需的微量营养元素, 也是稻米营养品质的重要指标。这些微量元素的缺乏可导致严重的疾病[29, 30]。本研究发现, 增施氮肥可以使上述营养元素含量有不同程度的下降。其原因可能是施氮量的增加使分蘖增多, 导致营养元素在稻株中的稀释效应, 此外无效分蘖还会造成一部分营养元素的损失。我们还观察到, 施氮后水稻的生物产量增加, 但花后茎中同化物向籽粒转运率降低(资料未列出), 这也可能是施氮后致钾、磷、硫、镁等营养元素在精米中含量降低的一个原因。
二是降低了稻米的食味品质。增施氮肥特别是高量施用氮肥显著增加了淀粉热浆黏度和消减值、降低了崩解值。增施氮肥后稻米的食味品质变差可能与增施氮肥后稻米垩白度提高有关, 也可能与蛋白质含量增加有关[31, 32, 33], 其机制有待进一步研究。
本研究还观察到, 不同时期中籼水稻品种对施氮量的响应, 在产量和稻米品质方面均有一定差异。在产量方面, 增施氮肥后现代品种产量增加的幅度大于早期品种。在稻米品质方面, 早期品种整精米率等加工品质对氮肥的响应较现代品种更为敏感, 增施氮肥后早期品种的整精米率下降幅度较现代品种大。增施氮肥后垩白度等外观品质指标值增加的幅度, 现代品种大于早期品种。与不施氮相比, 施用氮肥后现代品种RVA特征值的变化幅度也大于早期品种。说明在食味品质方面, 现代品种对氮肥的响应更加敏感。对于不同时期中籼水稻品种稻米品质对施氮量响应差异的机制, 以及如何通过适当的育种和栽培(氮肥的优化运筹)途径协调好各品质指标, 在提高水稻产量的同时不断提高稻米品质, 均需深入研究。
中籼水稻品种改良显著提高了产量, 改善了稻米品质。但现代高产品种稻米的垩白度仍然较高, 通过增加稻米的长宽比是降低稻米垩白度的一条重要途径。现代品种较早期品种的耐肥性强, 高量施用氮肥可以使超级稻品种获得较高的产量。不同时期中籼水稻品种稻米品质对施氮量响应的差异, 因品质指标不同而异。但总体上, 增施氮肥特别是高量施用氮肥会增加稻米的垩白度、降低稻米中营养元素含量和稻米的食味品质。如何通过氮肥的优化运筹实现水稻高产优质的协调发展是亟待研究的问题。
The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|