膜下滴灌条件下高产甜菜灌溉的生理指标
李智1, 李国龙1, 张永丰1, 于超1, 苏文斌2, 樊福义2, 张少英1,*
1内蒙古农业大学甜菜生理研究所, 内蒙古呼和浩特 010018
2内蒙古农牧业科学院特色作物研究所, 内蒙古呼和浩特 010031
*通讯作者(Corresponding author):张少英, E-mail:syzhang@imau.edu.cn

第一作者联系方式:E-mail:lizhi153@163.com

摘要

甜菜是我国重要的糖料作物, 其生物产量高, 需水量大, 合理灌溉是节约用水、提高产量的有效措施之一。本试验连续两年研究了内蒙古半干旱地区膜下滴灌条件下, 不同灌水量甜菜块根产量与叶面积指数、净光合速率、蒸腾速率、叶水势、土壤含水量和耗水量之间的关系, 以及不同灌水量对甜菜产量和水分利用效率的影响。结果表明, 高产甜菜的叶面积指数在叶丛快速生长期大于7.37, 在块根糖分增长期和糖分积累期分别为6.08~6.51和4.19~5.57, 在叶丛快速生长期、块根糖分增长期和糖分积累期叶水势分别为-0.09~ -0.22、-0.18~ -0.39和-0.26~ -0.48 MPa, 净光合速率分别为21.28~28.23、21.90~28.75和22.06~26.58 μmol m-2 s-1, 蒸腾速率在叶丛快速生长期和块根糖分增长期分别为9.36~10.21 mmol m-2 s-1和6.37~7.73 mmol m-2 s-1, 在糖分积累期大于4.69 mmol m-2 s-1, 耗水量分别为140.15~312.78、44.93~200.45和56.32~113.06 mm。甜菜产量、产糖量、水分利用效率均高的合理灌溉量, 在丰雨年份(生育期降雨量>500 mm)为1350 m3 hm-2, 在少雨年份(生育期降雨量<300 mm)为1800 m3 hm-2, 为甜菜节水灌溉提供了理论依据和生理指标。

关键词: 膜下滴灌; 甜菜; 生理指标; 产量; 含糖率
Physiological Indices of High-Yielding Sugar Beet under Drip Irrigation and Plastic Mulching
LI Zhi1, LI Guo-Long1, ZHANG Yong-Feng1, YU Chao1, SU Wen-Bin2, FAN Fu-Yi2, ZHANG Shao-Ying1,*
1Sugar beet Physiological Institute, Inner Mongolia Agricultural University, Hohhot 010018 China
2Special Crops Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
Abstract

Sugar beet is one of the important sugar crops in China, having high biological yield and high water consumption. The reasonable irrigation is one of the effective measures to save water and improve yield. In this experiment, the relationship among sugar beet yield, leaf area index, net photosynthetic rate, transpiration rate, leaf water potential, soil moisture and water consumption, and different irrigation water effects on sugar beet yield and water use efficiency were studied under plastic mulching with drip irrigation for two consecutive years in Inner Mongolia semi-arid regions. In high yielding sugar beet leaf area index was more than 7.37 in fast growth stage of leaf, 6.08-6.51, and 4.19-5.57 in root growth and sugar accumulation periods, in fast growth stage of leaf, root growth and sugar accumulation periods leaf water potential was 0.09-0.22, 0.18-0.39, and 0.26-0.48 MPa, net photosynthetic rate was 21.28-28.23, 21.90-28.75, and 22.06-26.58 μmol m-2 s-1, respectively, transpiration rate in fast growth stage of leaf and root growth period was 9.36-10.21 mmol m-2 s-1 and 6.37-7.73 mmol m-2 s-1, respectively, and more than 4.69 mmol m-2 s-1 in sugar accumulation period, water consumption was 140.15-312.78, 44.93-200.45, and 44.93-113.06 mm in the three growth stages, respectively. For high yield, high sugar yield and high water use efficiency, the reasonable irrigation water should be 1350 m3 hm-2 in the year of abundant rain (growth periods rainfall > 500 mm)and 1800 m3 hm-2 in the year of little rain (growth periods rainfall < 300 mm), which provides a theoretical basis and physiological indicators for sugar beet water-saving irrigation.

Keyword: Drip irrigation under plastic mulching; Sugar beet; Physiological indexes; Yield; Sugar content

甜菜是我国北方重要的糖料作物, 主要种植在西北、华北和东北地区。我国北方地区大部分位于干旱或半干旱地区, 水资源缺乏[1], 水分是制约甜菜产量的最主要因素[2]。膜下滴灌对提高作物水分利用效率效果显著[3, 4], 目前已广泛应用于棉花[5, 6, 7]、玉米[8, 9, 10]、小麦[11]、马铃薯[12]、甜菜[13, 14, 15, 16, 17]等多种作物。与常规灌溉相比, 膜下滴灌可以节水50%左右, 节肥20%, 节农药10%, 作物产量可以增加10%~20%, 综合经济效益增加40%以上。当前, 膜下滴灌甜菜种植面积逐年增加, 单产也有增长的趋势, 但其总产波动较大[18, 19], 其中一个重要原因就是甜菜生育期需要充足的水分来维持生长, 供水不足使甜菜产量显著降低[20, 21]。提高产量是农民增效的根本, 高产甜菜是指甜菜块根产量达到75 000 kg hm-2以上。本试验在膜下滴灌条件下, 研究不同灌水处理甜菜产量和生理指标的关系, 旨在于提出膜下滴灌条件下高产甜菜合理灌溉的生理指标, 为甜菜合理节水灌溉提供理论依据。

1 材料与方法
1.1 试验地概况

内蒙古农牧业科学院试验地(40° 48′ N, 111° 42′ E, 海拔1051.5 m)土壤为黏壤土, 肥力中上等, 0~30 cm 耕层土壤理化性质见表1, 甜菜生育期降雨量见图1。2013年生育期降雨量为502.4 mm, 2014年生育期降雨量为306.7 mm。

表1 土壤养分状况 Table 1 Soil nutrient status

图1 降雨量分布图Fig. 1 Rainfall distribution

1.2 试验材料及设计

供试品种KWS7156, 是德国KWS公司单粒杂交种。试验设5个灌水处理(表2), 采用膜下滴灌种植模式, 一膜2行, 2行中间铺一根滴灌带, 灌溉时间和灌水量见表2, 灌水量用水表控制, 每个处理3次重复, 共计15个小区, 采用随机区组排列, 小区面积7 m × 4 m, 宽行距60 cm, 窄行距40 cm, 株距25 cm, 理论株数80 000株hm-2, 试验小区周围设有保护行。

表2 不同灌水处理灌水量 Table 2 Irrigation amounts of different treatments
1.3 叶面积指数测定

在甜菜各生育时期, 从每小区随机选取5株, 采用打孔称重法测定叶面积指数。

1.4 光合生理指标测定

在甜菜各生育时期, 晴天上午9:00— 11:00, 从每小区随机选取5株, 用Li-6400光合仪测定倒三叶同一部位的光合速率(Pn, μ mol m-2 s-1)和蒸腾速率(Tr, mmol m-2 s-1)。

1.5 叶水势和土壤含水量测定

在甜菜各生育时期, 从每小区随机取5株上的倒三叶, 用保鲜膜包好, 带回实验室用3005型压力室测定叶水势。采用时域反射仪(TDR)测定土壤含水量, 测定土壤深度为80 cm, 每隔10 d测定一次, 降雨或灌水前后加测一次, 测定分地膜内外, 每隔20 cm分别测土壤体积含水量, 最后取其平均值。

1.6 甜菜耗水量和水分利用效率计算

ET =I +P± Δ W+R-D

式中, ET为甜菜各生育时期耗水量(mm); I为甜菜各生育时期灌水量(mm); P为甜菜各生育时期降雨量(mm); Δ W为时段初与时段末的土壤贮水量变化(mm); R为地表径流量; D为深层渗漏量。试验期间未发生地表径流, 深层渗漏量较小, 所以R和D可以忽略不计。

土壤贮水量(W, mm) = 土壤体积含水量(%) × 土层厚度(mm)

WUE = Y / ET0

WUE为水分利用效率, 单位为kg hm-2 mm-1, Y为甜菜块根产量(kg hm-2), ET0为甜菜生育期总耗水量(mm)。

1.7 数据分析

采用Microsoft Excel 2010和SAS9.0软件统计分析试验数据。

2 结果与分析
2.1 叶面积指数与产量的关系

甜菜是以块根为收获器官的经济作物, 其叶面积指数是衡量植株地上部分生长状况和源库平衡的重要指标, 从图2可以看出, 甜菜产量随叶面积指数的增加而增加。当叶面积指数在叶丛快速生长期大于7.37, 在块根糖分增长期和糖分积累期分别为6.08~6.51和4.19~5.57时, 可使产量达到71 000~95 000 kg hm-2

图2 甜菜叶面积指数与产量的关系Fig. 2 Relationship between LAI and yield of sugar beet

2.2 净光合速率和蒸腾速率与产量的关系

图3可以看出, 净光合速率随供水量的增加而增加, 块根产量随净光合速率的增加而增加, 甜菜生育前期, 净光合速率越大, 积累光合产物越多, 块根产量越高。当净光合速率在叶丛快速生长期、块根糖分增长期和糖分积累期分别为21.28~28.23、21.90~28.75和22.06~26.58 μ mol m-2 s-1时, 有利于甜菜产量的提高。

蒸腾速率与植物对水分的消耗密切相关。从图4可以看出, 甜菜块根产量随蒸腾速率的适当增加而增加, 植株供给的水分越多, 蒸腾速率越高, 产量也相应的提高; 甜菜生育后期, 蒸腾速率与产量呈显著正相关; 蒸腾速率在叶丛快速生长期和块根糖分增长期分别为9.36~10.21 mmol m-2 s-1和6.37~7.73 mmol m-2 s-1, 在糖分积累期大于4.69 mmol m-2 s-1

图3 甜菜净光合速率与产量的关系Fig. 3 Relationship between photosynthetic rate and yield of sugar beet

图4 甜菜蒸腾速率与产量的关系Fig. 4 Relationship between transpiration rate and yield of sugar beet

2.3 叶水势与产量的关系

植株叶水势反映植物组织中水分运移状况, 可作为合理灌溉的生理指标。从图5可以看出, 甜菜叶水势随供水量的增加而增加, 块根产量随叶水势的增加而增加, 叶丛快速生长期, 叶片生长旺盛, 叶水势值较高; 甜菜生育后期, 随着叶片衰老, 叶水势值也较低, 在叶丛快速生长期、块根糖分增长期和糖分积累期, 叶水势分别为-0.09~ -0.22、-0.18~ -0.39和-0.26~ -0.48 MPa, 是甜菜高产的水分代谢基础。

2.4 土壤含水量和耗水量与产量的关系

土壤含水量可以直接反映甜菜生长供水状况, 从图6可以看出, 块根产量随土壤含水量适当的增加而增加, 土壤含水量超过26%时, 块根产量下降。在叶丛快速生长期和块根糖分增长期, 土壤含水量分别为12.06%~25.69%和17.40%~25.91%, 糖分积累期低于25.97%。

耗水量指甜菜生育期消耗的水分, 包括土壤蒸发、植物蒸腾和代谢等消耗的所有水分。从图7可以看出, 甜菜耗水量随供水量的增加而增加, 块根产量随耗水量的增加而增加, 叶丛快速生长期、块根糖分增长期耗水较多, 占生育期总耗水量的42%~49%和20%~25%, 糖分积累期耗水量相对减少, 占生育期总耗水量的12%~18%; 当叶丛快速生长期、块根糖分增长期和糖分积累期耗水量分别为140.15~312.78 mm、44.93~200.45 mm和56.32~ 113.06 mm时, 块根可达高产水平。

图5 甜菜叶水势与产量的关系Fig. 5 Relationship between leaf water potential and yield of sugar beet

图6 土壤含水量与甜菜产量的关系Fig. 6 Relationship between soil moisture content and yield of sugar beet

图7 甜菜耗水量与产量的关系Fig. 7 Relationship between water consumption and yield of sugar beet

2.5 不同灌水处理对甜菜产质量和水分利用效率的影响

表3可以看出, 甜菜不同灌水处理块根产量随灌水量的增加而增加, 2013年处理W1、W2、W3和处理W4与处理W5块根产量存在显著差异(P < 0.05), 分别比处理W5高12.27%、14.13%、17.79%和8.53%; 2014年处理W1和处理W2与处理W5存在显著差异(P < 0.05), 分别比处理W5高18.73%和11.87%。

含糖率随灌水量的增加而降低, 2013年处理W5含糖率比处理W3高1.18个百分点, 差异显著(P < 0.05); 2014年处理W5分别比处理W1和处理W2高1.23和0.94个百分点, 差异显著(P < 0.05)。

产糖量随灌水量的增加而增加, 2013年处理W1、W2、W3和处理W4分别比处理W5高6.60%、8.56%、8.45%和6.71%, 差异显著(P < 0.05); 2014年处理W1与处理W5差异显著(P < 0.05), 比处理W5高9.55%。

两年试验表明, 甜菜块根产量和产糖量随灌水量的增加而增加, 但含糖率随灌水量的增加而减少。在生育期降雨量为502.4 mm的年份, 处理W3产量和产糖量都较高; 在生育期降雨量为306.7 mm的年份, 处理W2不仅产量较高, 而且产糖量也较高。

表4可以看出, 甜菜耗水量随降雨量和灌水量的增加而增加, 2年试验表明, 在内蒙古半干旱地区, 甜菜生育期平均耗水量在455~616 mm之间; 水分利用效率随灌水量的增加而减小, 2013年处理W3与处理W1和处理W2之间存在显著差异(P < 0.05); 2014年处理W2与处理W5之间存在显著差异(P < 0.05)。甜菜耗水量受生育期降雨量的影响比较大, 而水分利用效率与耗水量密切相关, 2013年灌水量小于W3, 水分利用效率较高, 2014年灌水量大于W5, 水分利用效率均下降。

表3 不同灌水处理对甜菜产量、含糖率和产糖量的影响 Table 3 Effect of different irrigation treatments on yield , sugar content and sugar yield
表4 不同灌水处理对甜菜耗水量和WUE的影响 Table 4 Effect of different irrigation treatments on water consumption and WUE
3 讨论

水分供应量直接影响着土壤含水量、作物水分代谢和光合性能, 进而影响作物的产量。膜下滴灌可以大幅度减少农田用水, 节约水资源。戴婷婷等[22]研究表明, 膜下滴灌用水量仅仅是喷灌的1/2, 是不覆膜滴灌的70%。研究表明, 黑花生[23]耗水量随供水量的增加而增加, 水稻[24]产量随供水量适当的增加而增加, 马铃薯[25]水分利用效率随供水量的增加而减少, 甜菜[26]供水量过多会影响甜菜含糖率, 适当减少灌水量不仅可以提高甜菜含糖率, 而且可以提高水分利用效率。张娜等[27]研究冬小麦表明, 叶片光合速率和蒸腾速率均随滴灌量的增加而增大; Monti等[28]和Kosobryukhov等[29]研究表明, 水分胁迫使甜菜叶片光合速率下降, 适当减少灌水量, 甜菜净光合速率和蒸腾速率值反而较高。

本试验中, 2013年生育期降雨量502.4 mm, 是丰雨年份, 2014年生育期降雨量306.7 mm, 属少雨年份。由于降雨量不同, 相同水分处理的甜菜叶片净光合速率在整个生育期2013年显著高于2014年, 但在甜菜生育前期和后期, 净光合速率分别为28.23 μ mol m-2 s-1和26.58 μ mol m-2 s-1时, 甜菜产量达到最大值, 说明不是净光合速率越大, 产量越高, 二者关系密切。而叶片蒸腾速率两年结果相差不大, 说明降雨量增加, 叶片蒸腾速率不会增加, 只是提高了土壤含水量和土壤蒸发量, 从而使甜菜耗水量增加。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。

参考文献
[1] 王瑗, 盛连喜, 李科, 孙弘颜. 中国水资源现状分析与可持续发展对策研究. 水资源与水工程学报, 2008, 19(3):10-14
Wang Y, Sheng L X, Li K, Sun H Y. Analysis of present situation of water resources and countermeasures for sustainble development in China. Water Resources & Water Engin, 2008, 19(3):10-14 (in Chinese with English abstract) [本文引用:1]
[2] 王昱, 赵廷红, 李波, 范兴业. 西北内陆干旱地区农户采用节水灌溉技术意愿影响因素分析. 节水灌溉, 2012, (11):50-54
Wang Y, Zhao T H, Li B, Fan X Y. Affecting factors of farmers willingness to adopt water-saving technology in northwest arid region of China. Water Saving Irrig, 2012, (11):50-54 (in Chinese with English abstract) [本文引用:1]
[3] 王敏, 王海霞, 韩清芳, 李荣, 张睿, 贾志宽, 杨宝平. 不同材料覆盖的土壤水温效应及对玉米生长的影响. 作物学报, 2011, 37:1249-1258
Wang M, Wang H X, Han Q F, Li R, Zhang R, Jia Z K, Yang B P. Effects of different mulching materials on soil water, temperature, and corn growth. Acta Agron Sin, 2011, 37:1249-1258 (in Chinese with English abstract) [本文引用:1]
[4] 胡晓棠, 李明思, 马富裕. 膜下滴灌棉花的土壤干旱诊断指标与灌水决策. 农业工程学报, 2002, 18(1) :49-53
Hu X T, Li M S, Ma F Y. Drought diagnosis indexes and drip irragation decision making for cotton under mulch. Trans CSAE, 2002, 18(1):49-53 (in Chinese with English abstract) [本文引用:1]
[5] 张超, 占东霞, 张亚黎, 罗宏海, 勾玲, 张旺锋. 膜下滴灌对棉花生育后期叶片与苞叶光合特性的影响. 作物学报, 2015, 41:100-108
Zhang C, Zhan D X, Zhang Y L, Luo H H, Gou L, Zhang W F. Effects of drip irrigation on photosynthetic characteristics of leaves and bracts in cotton at late growth stage. Acta Agron Sin, 2015, 41:100-108 (in Chinese with English abstract) [本文引用:1]
[6] Luo H H, Zhang Y L, Zhang W F. Effects of water stress and re-watering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica, 2016, 54:65-73 [本文引用:1]
[7] 占东霞, 张超, 张亚黎, 罗宏海, 勾玲, 张旺锋. 膜下滴灌水分亏缺下棉花开花后非叶绿色器官光合特性及其对产量的贡献. 作物学报, 2015, 41:1880-1887
Zhan D X, Zhang C, Zhang Y L, Luo H H, Gou L, Zhang W F. Photosynthetic characteristics after flowering and contribution of non-leaf green organs of cotton to yield under mulching-drip irrigation with water deficiency. Acta Agron Sin, 2015, 41:1880-1887 (in Chinese with English abstract) [本文引用:1]
[8] El-Hendawy S E, Kotab M A, Al-Suhaibani N A, Schmidhalter U. Optimal coupling combinations between the irrigation rate and glycinebetaine levels for improving yield and water use efficiency of drip-irrigated maize grown under arid conditions. Agric Water Manag, 2014, 140:69-78 [本文引用:1]
[9] van Donk S J, Petersen J L, Davison D R. Effect of amount and timing of subsurface drip irrigation on corn yield. Irrig Sci, 2013, 31:599-609 [本文引用:1]
[10] 姬景红, 李玉影, 刘双全, 佟玉欣. 覆膜滴灌对玉米光合特性、物质积累及水分利用效率的影响. 玉米科学, 2015, 23(1) :128-133
Ji J H, Li Y Y, Liu S Q, Tong Y X. Effect of drip irrigation under plastic film mulch on photosynthetic, dry matter accumulation and water use efficiency. J Maize Sci, 2015, 23(1):128-133 (in Chinese with English abstract) [本文引用:1]
[11] 程裕伟, 马富裕, 冯治磊, 王谊, 樊华, 廖江, 韩广泉. 滴灌条件下春小麦耗水规律研究. 干旱地区农业研究, 2012, 30(2):112-117
Cheng Y W, Ma F Y, Feng Z L, Wang Y, Fan H, Liao J, Han G Q . Study on water consumption rules in spring wheat under drip irrigation. Agric Res Arid Areas, 2012, 30(2):112-117 (in Chinese with English abstract) [本文引用:1]
[12] 秦军红, 陈有君, 周长艳, 庞保平, 蒙美莲. 膜下滴灌灌溉频率对马铃薯生长、产量及水分利用率的影响. 中国生态农业学报, 2013, 21:824-830
Qin J H, Chen Y J, Zhou C Y, Pang B P, Meng M L. Effects of frequency of drip irrigation frequency under mulch on potato growth, yield and water use efficiency. Chin J Eco-Agric, 2013, 21:824-830 (in Chinese with English abstract) [本文引用:1]
[13] 李智, 李国龙, 刘蒙, 张永丰, 尹成怀, 张少英. 膜下滴灌条件下甜菜水分代谢特点的研究. 节水灌溉, 2015, (9):52-56
Li Z, Li G L, Liu M, Zhang Y F, Yin C H, Zhang S Y. Study on water metabolism characteristics of sugar beet under plastic mulching drip irrigation. Water Saving Irrig, 2015, (9):52-56 (in Chinese with English abstract) [本文引用:1]
[14] Kiymaz S, Ertek A. Water use and yield of sugar beet (Beta vulgaris L. ) under drip irrigation at different water regimes. Agric Water Manag, 2015, 158:225-234 [本文引用:1]
[15] Hassanli A M, Ahmadirad S, Beecham S. Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency. Agric Water Manag, 2010, 97:357-362 [本文引用:1]
[16] Topak R, Süheri R, Acar B. Comparison of energy of irrigation regimes in sugar beet production in a semi-arid region. Energy, 2010, 35:5464-5471 [本文引用:1]
[17] Sahin U, Ors S, Kiziloglu S M, Kuslu Y. Evaluation of water use and yield responses of drip-irrigated sugar beet with different irrigation techniques. Agric Res, 2014, 74:302-310 [本文引用:1]
[18] 陈连江, 陈丽. 我国甜菜产业现状及发展对策. 中国糖料, 2010, (4) :62-68
Chen L J, Chen L. Sugar beets present situation and development countermeasures in China. Sugar Crops China, 2010, (4):62-68 (in Chinese) [本文引用:1]
[19] 高宝军, 韩卫平, 祁勇, 马丽宏, 卢秉福. 内蒙古甜菜生产优势分析. 中国糖料, 2013, (4):53-59
Gao B J, Han W P, Qi Y, Ma L H, Lu B F. Advantage analysis of sugarbeet planting in the Inner Mongolia. Sugar Crops China, 2013, (4):53-59 (in Chinese with English abstract) [本文引用:1]
[20] Pidgeon J D, Werker A R, Jaggard K W, Richter G M, Lister D H, Jones P D. Climatic impact on the productivity of sugar beet in Europe, 1961-1995. Agric Forest Meteorol, 2001, 109:27-37 [本文引用:1]
[21] Romano A, Sorgona A, Lupini A, Araniti F, Stevanato P, Cacco G, Abenavoli M R. Morpho-physiological responses of sugar beet (Beta vulgaris L. ) genotypes to drought stress. Acta Physiol Plant, 2013, 35:853-865 [本文引用:1]
[22] 戴婷婷, 张展羽, 邵光成. 膜下滴灌技术及其发展趋势分析. 节水灌溉, 2007, (2):43-44
Dai T T, Zhang Z Y, Shao G C. Analysis development tendency of drip irrigation under mulch. Water Sav Irrig, 2007, (2):43-44 (in Chinese) [本文引用:1]
[23] 夏桂敏, 褚凤英, 陈俊秀, 陈高明, 姚珍珠. 膜下滴灌条件下不同水分处理对黑花生产量及水分利用效率的影响. 沈阳农业大学学报, 2014, 45(6):11-14
Xia G M, Chu F Y, Chen J X, Chen G M, Yao Z Z. Effects of different water treatments on yield and water use efficiency of black peanut with drip irrigation under film mulch. J Shenyang Agric Univ, 2014, 45(6):11-14 (in Chinese with English abstract) [本文引用:1]
[24] 张荣萍, 马均, 王贺正, 李艳, 李旭毅, 汪仁全. 不同灌水方式对水稻结实期一些生理性状和产量的影响. 作物学报, 2008, 34:486-495
Zhang R P, Ma J, Wang H Z, Li Y, Li X Y, Wang R Q. Effects of different irrigation regimes on some physiology characteristics and grain yield in paddy rice during grain filling. Acta Agron Sin, 2008, 34:486-495 (in Chinese with English abstract) [本文引用:1]
[25] 王玉明, 张子义, 樊明寿. 马铃薯膜下滴灌节水及生产效率的初步研究. 中国马铃薯, 2009, 23(3) :148-151
Wang Y M, Zhang Z Y, Fan M S. Water use efficiency and water production efficiency of potato (Solanum tuberosum L. ) with under-mulch drip irrigation. Chin Potato J, 2009, 23(3):148-151 (in Chinese with English abstract) [本文引用:1]
[26] Topak R, Süheri S, Acar B. Effect of different drip irrigation regimes on sugar beet (Beta vulgaris L. ) yield, quality and water use efficiency in Middle Anatolian, Turkey. Irrig Sci, 2011, 29(1):79-89 [本文引用:1]
[27] 张娜, 张永强, 李大平, 牛海生, 张洋, 胡春军, 赵有来, 徐文修. 滴灌量对冬小麦光合特性及干物质积累过程的影响. 麦类作物学报, 2014, 34:795-801
Zhang N, Zhang Y Q, Li D P, Niu H S, Zhang Y, Hu C J, Zhao Y L, Xu W X. Effect of drip irrigation amount on photosynthesis characteristics and dry matter accumulation of winter wheat. J Triticeae Crops, 2014, 34:795-801 (in Chinese with English abstract) [本文引用:1]
[28] Monti A, Brugnoli E, Scartazza A, Amaducci M T. The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L. ). Exp Bot, 2006, 57:1253-1262 [本文引用:1]
[29] Kosobryukhov A A, Bil K Y, Nishio J N. Sugar beet photosynthesis under conditions of increasing water deficiency in soil and protective effects of a low-molecular-weight alcohol. Appl Biochem Microbiol, 2004, 40:668-674 [本文引用:1]