弱光胁迫对不同基因型玉米籽粒发育和碳氮代谢的影响
周卫霞1, 董朋飞1, 王秀萍2,3, 李潮海1,*
1河南农业大学农学院/农业部玉米区域技术创新中心, 河南郑州 450002
2中国气象局 / 河南省农业气象保障与应用技术重点实验室, 河南郑州 450003
3河南省气象科学研究所, 河南郑州 450003
*通讯作者(Corresponding author): 李潮海, E-mail:lichaohai2005@163.com, Tel: 0371-63555629
摘要

以不耐阴型玉米豫玉22和耐阴型玉米郑单958为试验材料, 设置自然光照和弱光胁迫2个处理, 研究弱光胁迫对不同基因型玉米籽粒建成和碳氮代谢的影响, 探求弱光胁迫下碳氮代谢与籽粒建成的关系。结果表明, 弱光胁迫下, 玉米籽粒生长发育减缓, 败育粒增加, 籽粒体积和干重降低; 果穗顶部籽粒可溶性糖、蔗糖含量和全氮含量升高, 淀粉含量和碳氮比降低; 豫玉22胚乳细胞中淀粉粒密度降低, 郑单958与对照相近。弱光胁迫下, 不耐阴型玉米豫玉22果穗籽粒的生长发育减缓程度大于耐阴型玉米郑单958, 同一基因型果穗顶部籽粒生长发育减缓程度大于中部籽粒, 耐阴型玉米郑单958在恢复自然光照后籽粒体积、干重、籽粒碳氮含量和碳氮比与对照之间的差异均小于豫玉22, 表现出更强的补偿效应。淀粉合成能力和碳氮比的下降可能是弱光胁迫条件下籽粒发育不良, 以致最终造成败育的主要原因。

关键词: 玉米; 弱光胁迫; 光恢复; 基因型; 籽粒生长发育; 碳氮代谢
Effects of Low-light Stress on Kernel Setting and Metabolism of Carbon and Nitrogen in Different Maize (Zea maysL.) Genotypes
ZHOU Wei-Xia1, DONG Peng-Fei1, WANG Xiu-Ping2,3, LI Chao-Hai1,*
1Agronomy College, Henan Agricultural University, Zhengzhou 450002, China
2China Meteorological Administration / Henan Key Laboratory of Agrometeorological Support and Applied Technique, Zhengzhou 450003, China
3Henan Institute of Meteorological Sciences, Zhengzhou 450003, China
Abstract

Light is one of the important factors influencing kernel growth and development of maize (Zea maysL.). A split plot experiment was conducted under field conditions to study the effects of low-light stress and light recovery on kernel setting, and carbon and nitrogen metabolism of different maize genotypes in 2011 and 2012. Light treatments (natural light and 50% shading from three days before tasselling to ten days after silking) were the main plots and cultivars (low light sensitive hybrid Yuyu 22 and low light tolerance hybrid Zhengdan 958.) were sub-plots. The results showed that low-light stress delayed the growth and development of kernels, raised the number of abortive kernel, reduced kernel volume and dry weight. Contents of soluble sugar, sucrose and starch of apical kernel were increased while the content of nitrogen and C/N ratio decreased. Starch grain density in kernel endosperm cells of Yuyu 22 reduced while that of Zhengdan 958 almost remained the same. Differences between treatments of Yuyu 22 were greater than those of Zhengdan 958, the reduction of kernel growth and development was greater in the apical than in the middle of ear. Zhengdan 958 showed stronger compensatory effect after light recovery, differences between light treatments and the control in kernel volume, dry weight, kernel carbon and nitrogen contents and C/N ratio of Zhengdan 958 were lower than that of Yuyu 22. The declines of the starch synthesis and C/N ratio are the primary causes leading to kernel abortion.

Keyword: Maize; Low-light stress; Light recovery; Genotype; Kernel development; Carbon and nitrogen metabolism
引言

黄淮海地区是我国夏玉米主产区, 该区玉米生长中后期经常出现阴雨寡照天气, 引发的弱光胁迫影响玉米授粉和籽粒生长, 严重影响玉米产量[1,2]。关于弱光胁迫对玉米生长发育的影响国内外有大量研究[3,4,5,6,7]。人工遮光试验表明, 弱光胁迫对玉米产量影响最大的时期是在吐丝前后[2,8]。Uhart等[9]认为开花期遮光处理使穗数、穗粒数显著下降, 但对粒重和穗行数无显著影响; Reed等[8]研究发现, 开花期只得到50%的自然光照会使穗粒数下降, 粒重上升, 产量显著降低。遮光条件下, 叶片光合作用下降[10], 碳水化合物供应减少, 总糖含量和淀粉含量降低而可溶性蛋白、有机氮含量升高, 籽粒中蛋白质含量升高, 淀粉含量降低[2,11,12]。营养物质含量与籽粒败育关系的研究表明, 碳氮代谢的协调对作物生长发育和籽粒产量非常重要[3,9,11,13,14]。尽管前人关于弱光胁迫对玉米籽粒性状的影响已进行了大量研究, 但弱光胁迫条件下不同基因型玉米籽粒建成及其与碳氮代谢关系的比较研究却鲜见报道。本文探讨弱光胁迫对不同耐阴型玉米籽粒建成的影响及其与碳氮供应之间的关系, 以期为耐弱光胁迫玉米新品种选育及应用提供理论依据。

1 材料与方法
1.1 试验处理与设计

2011—2012年在河南农业大学郑州科教园区网室内进行。试验盆栽, 塑料盆高30 cm, 内径38 cm。2011年于6月7日播种, 9月13日收获, 2012年于6月11日播种, 9月28日收获。装盆前土壤经风干后过1 cm × 1 cm方孔土筛, 每盆装土15 kg。供试土壤为潮土, 含有机质8.24 g kg-1、水解氮63.5 mg kg-1、速效磷21.5 mg kg-1、速效钾133.3 mg kg-1。每盆施复合肥(含N 25%、P2O5 18%、K2O 12%) 12 g做基肥, 大喇叭口期追施5 g尿素。播种前浇透水, 其他管理同一般大田。

采用二因素裂区设计, 主区因素为光照, 设置自然光照(L)和人工遮光(S, 自然光照的50%) 2个处理, 副区因素为品种, 供试品种为本实验室前期研究筛选出来的不耐阴型玉米豫玉22和耐阴型玉米郑单958[15]。在网室顶部和东西两侧使用透光率为50%的黑色遮阳网进行弱光胁迫处理(遮阴棚高5 m, 弧顶钢架结构, 东西方向设置, 可保证冠层通风条件良好及便于田间观察取样)。于抽雄前3 d进行弱光胁迫处理, 吐丝后10 d恢复自然光照。吐丝期统一套袋授粉, 以去除雌雄间隔期对籽粒建成的影响。每处理种植60盆, 按品种适宜密度摆放(豫玉22为40 500株 hm-2, 郑单958的为67 500株 hm-2)。

1.2 调查测定项目与方法

在玉米吐丝后5 d每处理取15穗, 吐丝后10、15和20 d每次每处理取3穗, 将籽粒烘干粉碎后用于可溶性碳水化合物和全氮含量的测定。

1.2.1 败育籽粒数目 分别剥取样品果穗顶部1~10周和中部1~10周玉米籽粒, 数取败育籽粒数目(败育判定标准: 失去光泽、籽粒表面凹陷、整体皱缩, 与同穗同部位其他籽粒相比有停止发育的迹象)。

1.2.2 籽粒体积和干重 剥取不同部位玉米籽粒, 混合均匀后数取100粒, 用溢水法测定籽粒体积后105℃杀青20 min, 70~80℃烘至恒重, 称重。

1.2.3 籽粒超微结构观察 吐丝后20 d取果穗中部正常玉米籽粒, 切取胚和花柱遗迹之间的部分, 用0.1 mol L-1磷酸缓冲液洗3次, 2.5%戊二醛固定液预固定2 h, 磷酸缓冲液冲洗掉多余的戊二醛, 1%锇酸固定2 h, 清洗3次, 30%-40%-50%-70%-80%- 90%-100%乙醇梯度脱水, 将样品移入无水乙醇后再转入醋酸戊酯中, 放置15 min, 取出样品放入干燥器中干燥, 真空喷镀, 以日产S-450型扫描电镜对籽粒胚乳细胞观察、照相[16], 并对同一品种在相同放大倍数下统计胚乳细胞淀粉粒的数目。

1.2.4 可溶性糖、蔗糖和淀粉含量 分别采用蒽酮比色法、间苯二酚法和盐酸水解的蒽酮比色法[17]

1.2.5 全氮含量 采用半微量凯氏定氮法测定[18]

1.2.6 玉米籽粒碳氮比值 C/N比=可溶性糖含量/氮含量[19]

1.3 数据分析

两年试验结果趋势基本一致, 取两年的数据合并分析, 电镜观察取2011年的结果。用SPSS17.0统计分析数据, Sigma10.0软件绘制图表, 数据以平均值±标准偏差表示。

2 结果与分析
2.1 弱光胁迫对不同基因型玉米籽粒生长发育的影响

2.1.1 对不同基因型玉米籽粒败育的影响 遮光处理后, 2个基因型玉米败育籽粒数目均随生育进程而显著增加。吐丝后10 d, 豫玉22和郑单958果穗顶部败育粒数分别比对照增加56粒和23粒; 豫玉22果穗中部败育粒数比对照增加16粒(图1)。恢复自然光照至吐丝后20 d, 豫玉22和郑单958果穗顶部败育粒数分别比对照增加至81粒和40粒, 豫玉22果穗中部败育粒数比对照增加至39粒, 郑单958果穗中部败育粒数略有增加。可见, 在弱光胁迫下不耐阴型玉米豫玉22败育籽粒增加的幅度显著大于

图1 弱光胁迫对不同基因型玉米籽粒败育的影响YY22: 豫玉22; ZD958: 郑单958; L: 自然光照; S: 弱光胁迫; DAS: 吐丝后天数; “*”表示差异在5%水平显著。Fig. 1 Effects of low-light stress on kernel abortion of different maize genotypesYY22: Yuyu 22; ZD 958: Zhengdan 958; L: natural light; S: shade; DAS: days after silking; “*” means significant difference at the 0.05 probability level.

耐阴型玉米郑单958, 同一基因型果穗顶部籽粒败育程度显著大于中部。

2.1.2 对籽粒体积和干重的影响 2个基因型玉米顶部和中部籽粒体积与干重在弱光胁迫下均随生育进程比对照显著降低, 恢复自然光照后处理间差异减小, 但其差异仍保持显著水平。弱光胁迫下, 籽粒干重在吐丝后5 d时处理间差异不显著; 吐丝后10 d时, 豫玉22和郑单958果穗顶部籽粒体积分别比对照减少76.43%和28.68% (图2-A), 干重分别减少91.12%和52.38% (图2-C); 果穗中部籽粒体积分别比对照减少36.80%和24.67% (图2-B), 干重分别减少45.76%和28.63% (图2-D)。恢复自然光照后在吐丝后15 d和20 d, 豫玉22和郑单958果穗顶部籽粒体积分别比对照减少80.45%和64.88%, 33.57%和26.02%, 干重分别减少95.34%和80.56%, 57.02%和24.82%; 果穗中部籽粒体积分别减少40.86%和34.47%, 30.51%和22.22%, 干重分别减少63.64%和49.54%, 30.72%和14.09%。可见, 遮光处理后不耐阴型玉米豫玉22籽粒体积和干重降低的幅度均显著大于耐阴型玉米郑单958。弱光处理的2个基因型与对照的差异在恢复自然光照后逐渐减小, 耐阴型玉米在弱光胁迫下籽粒发育程度相对较好且在自然光照下有更强的恢复能力。

2.1.3 对籽粒超微结构的影响 不同基因型玉米中部籽粒第4层胚乳细胞的超微结构显示(图3), 弱光胁迫下, 不同耐阴型玉米籽粒中的质体与对照相同, 均以淀粉粒的形式存在, 不耐阴型玉米豫玉22在弱光胁迫下淀粉粒数目明显减少, 同一放大倍数下观察视野内的淀粉粒数目比对照降低45.45% (图4), 差异达到极显著水平, 耐阴型玉米郑单958比对照减少9.09%, 差异不显著。可见, 不同基因型玉米籽粒胚乳细胞中淀粉粒密度对弱光胁迫的响应存在较大差异。

2.2 弱光胁迫对不同基因型玉米籽粒碳水化合物含量的影响

弱光胁迫下, 2个基因型玉米果穗顶部籽粒可溶性糖含量均降低(图5-A), 中部籽粒的均增加(图5-B), 蔗糖含量表现为顶部和中部籽粒均增加(图5-C, D)。弱光胁迫下豫玉22果穗顶部籽粒可溶性糖含量在吐丝后10 d比对照降低40.74%, 恢复自然光照后较对照降低13.90%~12.41%。郑单958在弱光胁迫和恢复自然光照后与对照的差异始终小于10%。弱光胁迫处理的豫玉22和郑单958果穗中部籽粒可溶性糖含量在吐丝后10 d和15 d分别比对照增加13.44%和35.44%, 25.03%和39.74%, 吐丝后20 d处理间差异不显著。弱光胁迫处理的豫玉22和郑单958果穗顶部籽粒蔗糖含量在吐丝后10 d分别比对照增加32.27%和27.48% (图5-C), 中部分别增加25.90%和22.81% (图5-D)。恢复自然光照后, 在吐丝后15 d和20 d, 豫玉22和郑单958顶部籽粒蔗糖含量分别比对照增加46.41%和54.94%, 11.00%和14.04%; 中部分别增加13.34%和14.45%, 12.61%和9.38%。弱光胁迫下, 豫玉22和郑单958果穗顶部籽粒淀粉含量在吐丝后10 d分别比对照减少23.95%

图2 弱光胁迫对不同基因型玉米籽粒体积和干重的影响A、B和C、D分别表示100粒籽粒体积和干重。“*”表示差异在5%水平显著。Fig. 2 Effects of low-light stress on kernel volume, fresh weight and dry weight of different maize genotypesCapital letter represent 100-kernel volume (A, B) and dry weight (C, D), respectively.

“*” means significant difference at the 0.05 probability level.

图3 弱光胁迫对不同基因型玉米籽粒淀粉粒的影响图中S淀粉粒。标尺为5 μm。“*”表示差异在5%水平显著。Fig. 3 Effects of low-light stress on kernel starch granule of different maize genotypesS: Starch grain. Bar = 5 μm . “*” means significant difference at the 0.05 probability level.

图4 弱光胁迫对不同基因型玉米籽粒淀粉粒数目的影响缩写同图1。Abbreviations are the same as those given in Figure 1.Fig. 4 Effects of low-light stress on kernel starch grainnumber of different maize genotypes

和13.27% (图5-E); 恢复自然光照后豫玉22顶部籽粒淀粉含量较对照减少20.75%~23.95%, 郑单958仅减少3.25%~5.03%。恢复自然光照后豫玉22中部籽粒淀粉含量较对照降低2.66%~18.83%, 而郑单958则增加1.13%~10.65% (图5-F)。

2.3 弱光胁迫对不同基因型玉米籽粒氮含量的影响

遮光处理增加了2个基因型玉米果穗顶部和中部(图6)籽粒氮含量。吐丝后5 d处理间差异均不显著。吐丝后10 d, 遮光处理的豫玉22和郑单958顶部籽粒氮含量分别比对照增加33.64%和21.12%, 中部增加8.86%和3.64%。恢复自然光照后, 随生育进程处理间差异减小, 至吐丝后20 d, 弱光处理的

图5 弱光胁迫对不同基因型玉米籽粒可溶性糖、蔗糖和淀粉含量的影响A、B, C、D和E、F分别表示可溶性糖、蔗糖和淀粉含量。“*”表示差异在5%水平显著。Fig. 5 Effects of low-light stress on kernel soluble sugar, sucrose and starch contents of different maize genotypesCapital letter represent the contents of soluble sugar (A, B), sucrose (C, D) and starch (E, F), respectively.

“*” means significant difference at the 0.05 probability level.

图6 弱光胁迫对不同基因型玉米籽粒全氮含量的影响“*”表示差异在5%水平显著。“*” means significant difference at the 0.05 probability level.Fig. 6 Effects of low-light stress on kernel nitrogen content of different maize genotypes

豫玉22和郑单958顶部籽粒氮含量分别比对照增加19.23%和14.38%, 中部分别增加7.67%和1.56%。可见遮光处理后不耐阴型玉米豫玉22籽粒氮含量的增加幅度远大于耐阴型玉米郑单958, 恢复自然光照后2个基因型处理间差异均减小, 同一基因型果穗顶部籽粒全氮含量增加幅度大于中部。

2.4 弱光胁迫对不同基因型玉米籽粒C/N比的影响

2个基因型玉米果穗顶部籽粒碳氮比在遮光处理后降低, 而在中部籽粒表现升高(图7), 吐丝后5 d处理间差异均较小, 吐丝后10 d, 弱光处理的豫玉22和郑单958果穗顶部籽粒碳氮比分别比对照降低55.70%和24.46%, 中部分别比对照增加20.08%和30.95%。恢复自然光照后, 随生育进程处理间差异减小, 至吐丝后20 d, 豫玉22和郑单958果穗顶部籽粒碳氮比分别比对照降低21.85%和12.36%, 中部籽粒处理间差异不显著。可见遮光处理后, 不耐阴型玉米豫玉22籽粒碳氮比与对照的差异大于耐阴型玉米郑单958, 恢复自然光照后2个基因型与其对照的差异均减小, 果穗顶部和中部籽粒碳氮比对弱光胁迫的响应存在极大差异。

3 讨论

穗粒数是玉米最重要的产量构成因素, 败育粒数的增多会显著降低籽粒产量。关于正常生长条件下玉米籽粒败育发生的时期, 目前尚未形成一致的结论[20,21,22]。玉米籽粒的败育机制目前有以下几个观点, 即雌雄花期不协调和花粉育性的降低[23,24,25], 碳氮代谢不协调[2,26,27,28], 物质运输路径[11]和激素调 控[22,29,30,31,32,33]等, 尚未形成定论。不同逆境条件与玉米发育间的互作导致籽粒的败育, 这在开花期表现得更明显[7]。黄淮海地区8月份常遭遇阴雨寡照天气, 造成玉米生长发育的弱光胁迫, 而此时正值玉米吐丝授粉和籽粒建成期, 是影响籽粒产量的关键时期[2], 这将直接造成穗粒数和粒重的降低[2,7,8,9]。通过抽雄前3 d至吐丝后10 d的遮光处理发现, 弱光胁迫下

图7 弱光胁迫对不同基因型玉米籽粒碳氮比的影响“*”表示差异在5%水平显著。“*” means significant difference at the 0.05 probability level.Fig. 7 Effects of low-light stress on kernel C/N ratio of different maize genotypes

玉米籽粒败育粒数显著增多, 籽粒体积和干重显著下降, 这将导致玉米籽粒库容的降低, 影响后期籽粒干物质的积累能力, 并最终导致减产。玉米受弱光胁迫影响的程度存在明显的基因型和粒位差异, 这与Setter等[29]的研究结果相似。基因型造成的差异大于粒位造成的差异。弱光胁迫对玉米籽粒性状的影响在恢复自然光照后逐渐减小, 表现为吐丝后10 d至吐丝后15 d处理间差异继续增加而吐丝后 15 d至吐丝后20 d处理间差异逐渐减小, 表明弱光对玉米籽粒建成产生了可逆和不可逆2种损伤, 恢复自然光照5 d后, 可逆损伤逐渐恢复, 但顶部籽粒的不可逆损伤表现更强, 且不耐阴型玉米豫玉22受损程度明显高于耐阴型玉米郑单958。

弱光胁迫对籽粒显微结构的研究较少。贾士芳等[11]的研究表明, 遮光后小穗柄维管束截面积无明显变化, 胚乳传递细胞变小, 传递细胞壁内突变稀、变短, 不同层次间连接程度下降; 玉米籽粒胚乳细胞淀粉发育迟缓, 淀粉粒体积减小, 蛋白质体数目增多。本研究发现, 不耐阴型玉米豫玉22胚乳细胞中淀粉粒在弱光胁迫下的变化趋势与贾士芳等[11]的研究结果相似, 但淀粉粒的密度显著减小, 耐阴型玉米郑单958的淀粉粒密度与对照接近, 这也体现了玉米籽粒淀粉对弱光胁迫响应的基因型差异。

籽粒90%左右的物质成分来自碳同化产物, 成熟籽粒中的碳同化物主要是淀粉。玉米植株中可溶性糖含量的增加可以使籽粒产量显著增长[34,35], 淀粉的生物合成是产量的决定因素[36], 蔗糖是同化物运输和卸载的主要形式和淀粉合成的底物[36]。弱光胁迫下, 可溶性糖含量[29,37]及其运转量降低[38], 淀粉含量下降, 营养物质的生产和调配受到影 响[1,12,39], 籽粒产量降低[40,41]。本研究中, 弱光胁迫下不耐阴型豫玉22顶部籽粒中可溶性糖和淀粉含量的降低幅度和蔗糖含量的增加幅度均大于耐阴型玉米郑单958, 作为淀粉合成底物的蔗糖含量在不耐阴型玉米豫玉22顶部籽粒中的大量积累和淀粉含量的大幅降低表明淀粉合成能力受到了严重影响, 淀粉合成能力的降低应该是导致籽粒败育的主要原因之一, 同时表明了碳水化合物的含量虽然在弱光胁迫下降低, 却并不是导致籽粒败育的直接原因, 这也支持了Reed等[26]的观点, 而淀粉合成能力下降的原因可能是淀粉合成相关酶活性的下降[42]。2个基因型玉米中部籽粒在弱光胁迫下淀粉含量增加表明中部籽粒获得更多的物质供应, 这可能是籽粒的位势和弱光胁迫对顶部可溶性碳水化合物运输路径的损伤而使中部获得更多的碳水化合物等多种因素造成的[11]

籽粒中的氮主要来自根的吸收和营养器官的转移[43], Andrade等[44]和Reed等[8]认为籽粒氮的同化和供应限制粒重的增加, 是籽粒建成的决定因素。本研究表明, 弱光胁迫下顶部和中部籽粒全氮含量均增加, 表明氮含量的变化不是籽粒败育的诱因。2个基因型玉米果穗顶部籽粒C/N比降低而中部升高, 且不耐阴型玉米豫玉22与对照的差异大于耐阴型玉米郑单958, 则C/N比的降低可能是导致籽粒败育的重要原因。

4 结论

玉米籽粒建成对弱光胁迫的响应存在明显的基因型差异, 耐阴型玉米在弱光胁迫下比不耐阴型玉米有更强的补偿机制, 恢复自然光照后有更强的恢复能力。淀粉合成能力和碳氮比的降低可能是导 致籽粒在弱光胁迫下发育不良以致最终败育的主要原因。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。

参考文献
[1] Singh S. . Physiological response of different crop species to low light stress. Indian J Plant Physiol, 1994, 37: 147-151 [本文引用:2]
[2] Zhao J-R(赵久然), Chen G-P(陈国平). . Effects of shading treatment at different stages of plant development on grain production of corn (Zea mays L. ) and observations of tip kernel abortion. Sci Agric Sin(中国农业科学), 1990, 23(4): 28-34 (in Chinese with English abstract) [本文引用:6]
[3] Zhang J-W(张吉旺), Dong S-T(董树亭), Wang K-J(王空军), Hu C-H(胡昌浩), Liu P(刘鹏). . Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agron Sin(作物学报), 2007, 33(2): 216-222 (in Chinese with English abstract) [本文引用:2] [CJCR: 1.8267]
[4] Zhang J-W(张吉旺), Wu H-X(吴宏霞), Dong S-T(董树亭), Wang K-J(王空军), Hu C-H(胡昌浩), Liu P(刘鹏). . Effects of shading on yield and quality of summer maize. J Maize Sci(玉米科学), 2009, 17(5): 124-129 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.0045]
[5] Du C-F(杜成凤), Li C-H(李潮海), Liu T-X(刘天学), Zhao Y-L(赵亚丽). . Response of anatomical structure and photosynthetic characteristics to low light stress in leaves of different maize genotypes. Acta Ecol Sin(生态学报), 2011, 31(21): 6633-6640 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.7477]
[6] Kiniry J R, Tischler C R, Rosenthal W D, Gerik T J. . Nonstructural carbohydrate utilization by sorghum and maize shaded during grain growth. Crop Sci, 1992, 32: 131-137 [本文引用:1] [JCR: 1.641]
[7] Andrade F H, Frugone M I, Uhart S A. . Intercepted radiation at flowering and kernel number in maize: shade versus plant density effects. Crop Sci, 1993, 33: 482-485 [本文引用:3] [JCR: 1.641]
[8] Reed A J A, Singletary G W, Schussler J R, Williamson D R, Christy A L. . Shading effects on dry matter and nitrogen partitioning, kernel number, and yield of maize. Crop Sci, 1988, 28: 819-825 [本文引用:4] [JCR: 1.641]
[9] Uhart S A, Andrade F H. . Nitrogen deficiency in maize: II. Carbon-nitrogen interaction effects on kernel number and grain yield. Crop Sci, 1995, 35: 1384-1389 [本文引用:3] [JCR: 1.641]
[10] Li C-H(李潮海), Zhao Y-L(赵亚丽), Yang G-H(杨国航), Luan L-M(栾丽敏), Wang Q(王群), Li N(李宁). . Effects of shading on photosynthetic characteristics of different genotype maize. Chin J Appl Ecol(应用生态学报), 2007, 18(6): 1259-1264 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.7261]
[11] Jia S-F(贾士芳), Li C-F(李从锋), Dong S-T(董树亭), Zhang J-W(张吉旺). . Effects of shading at different stages after anthesis on maize grain weight and quality at cytology level. Sci Agric Sin(中国农业科学), 2010, 43(5): 911-921 (in Chinese with English abstract) [本文引用:6] [CJCR: 1.4522]
[12] Guan Y-X(关义新), Lin B(林葆), Ling B-Y(凌碧莹). . The interactive effects of growth light condition and nitrogen supply on maize (Zea mays L. ) seedling photosynthetic traits and metabolism of carbon and nitrogen. Acta Agron Sin(作物学报), 2000, 26(6): 806-812 (in Chinese with English abstract) [本文引用:2] [CJCR: 1.8267]
[13] Pan W L, Camberato J J, Jackson W A, Moll R H. . Utilization of previously accumulated and concurrently absorbed nitrogen during reproductive growth in maize: influence of prolificacy and nitrogen source. Plant Physiol, 1986, 82: 247-253 [本文引用:1] [JCR: 6.535]
[14] Moll R H, Jackson W A, Mikkelsen R L. . Recurrent selection for maize grain yield: dry matter and nitrogen accumulation and partitioning changes. Crop Sci, 1994, 34: 874-881 [本文引用:1] [JCR: 1.641]
[15] Fu J(付景), Li C-H(李潮海), Zhao J-R(赵久然), Ma L(马丽), Liu T-X(刘天学). . Shade-tolerance indices of maize: selection and evaluation. Chin J Appl Ecol(应用生态学报), 2009, 20(11): 2705-2709 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.7261]
[16] Song F-B(宋凤斌), Dai J-Y(戴俊英). . Effects of drought stress on surface ultra structure and vigour of pollen and filamen. J Jilin Agric Univ(吉林农业大学学报), 2004, 26(1): 1-5 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.5831]
[17] Zhang Z-L(张志良), Qu W-Q(瞿伟箐). Laboratory Guide for Plant Physiology (植物生理学实验指导), 3rd edn. Beijing: Higher Education Press, 2003. pp127-129 [本文引用:1]
[18] Bao S-D(鲍士旦). Analysis of Soil and Agricultural Chemistry (土壤农化分析), 3rd edn. Beijing: China Agriculture Press, 2000. pp44-49(in Chinese) [本文引用:1]
[19] Shen L-X(申丽霞), Wang P(王璞), Lan L-W(兰林旺), Sun X-H(孙西欢). . Effect of nitrogen supply on carbon-nitrogen metabolism and kernel set in summer maize. Plant Nutr Fert Sci(植物营养与肥料学报), 2008, 13(6): 1074-1079 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.4752]
[20] Zhang X-M(张秀梅), Ren H-P(任和平), Yang T-Z(杨铁钊). . Study on the relationship between kernel abortion occurring time of apical ear and kernel sugar content. J Henan Agric Coll(河南农学院学报), 1984, (3): 15-23 (in Chinese) [本文引用:1]
[21] Tollenaar M, Daynard T B. . Kernel growth and development at 2 positions on ear of maize (Zea mays). Can J Plant Sci, 1978, 58: 189-197 [本文引用:1] [JCR: 0.613]
[22] Zhang F-L(张凤路), Wang Z-M(王志敏). . Studies on the relationship between polyamines and kernel abortion in maize. Acta Agron Sin(作物学报), 1999, 25(5): 565-568 (in Chinese with English abstract) [本文引用:2] [CJCR: 1.8267]
[23] Otegui M E, Andrade F H, Suero E E. . Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Res, 1995, 40: 87-94 [本文引用:1] [JCR: 2.474]
[24] He Z-Y(赫忠友), Tan S-Y(谭树义), Lin L(林力), Hong D-K(洪德开), Bai C-Y(白翠云). . Study on various light intensity and its quality affecting the fertility of maize staminate flower. Chin Agric Bull(中国农学通报), 1998, 14(4): 6-8 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.7823]
[25] Bolaños J, Edmeades G. . Eight cycles of selection for drought tolerance in lowland tropical maize: II. Responses in reproductive behavior. Field Crops Res, 1993, 31: 253-268 [本文引用:1] [JCR: 2.474]
[26] Reed A, Singletary G. . Roles of carbohydrate supply and phytohormones in maize kernel abortion. Plant Physiol, 1989, 91: 986-992 [本文引用:2] [JCR: 6.535]
[27] Hiyane R, Hiyane S, Tang A C, Boyer J S. . Sucrose feeding reverses shade-induced kernel losses in maize. Ann Bot, 2010, 106: 395-403 [本文引用:1] [JCR: 1.014]
[28] Feng H-Y(冯汉宇), Wang Z-M(王志敏), Kong F-N(孔凡娜), Zhang M-J(张敏洁), Zhou S-L(周顺利). . Relationships of maize kernel setting with carbohydrate and nitrogen supply under controlling pollination. Acta Agron Sin(作物学报), 2011, 37(8): 1415-1422 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.8267]
[29] Setter T L, Flannigan B A, Melkonian J. . Loss of kernel set due to water deficit and shade in maize: carbohydrate supplies, abscisic acid, and cytokinins. Crop Sci, 2001, 41: 1530-1540 [本文引用:3] [JCR: 1.641]
[30] Tang Q-L(唐祈林), Rong T-Z(荣廷昭). . The relationship between endogenous hormone and barren ear tip of maize. J Nucl Agric Sci(核农学报), 2007, 21(4): 366-368 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.9108]
[31] Reed A J, Singletary G W. . Roles of carbohydrate supply and phytohormones in maize kernel abortion. Plant Physiol, 1989, 91: 986-992 [本文引用:1] [JCR: 6.535]
[32] Zhang F-L(张凤路), Zhao M(赵明), Wang Z-M(王志敏), Wang S-A(王树安), Zhao J-R(赵久然), Guo J-L(郭景伦). . Maize kernel development and their releasing of ethylene. J China Agric Univ(中国农业大学学报), 1997, 2(3): 85-89 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.7757]
[33] Zhang F-L(张凤路), Zhao M(赵明), Wang Z-M(王志敏), Wang S-A(王树安), Zhao J-R(赵久然), Guo J-L(郭景伦). . Study on regulation of ethylene on maize kernel development and kernel abortion. J Agric Univ Hebei(河北农业大学学报), 1996, 19(4): 1-5 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.5918]
[34] Chen C-Y(陈传永), Hou Y-H(侯玉虹), Li G(李刚), Zhu P(朱平), Dong Z-Q(董志强), Zhao M(赵明). . Effects of plant population on the soluble sugar and yield of spring maize. J Maize Sci(玉米科学), 2008, 16(4): 77-81 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.0045]
[35] Zhang H-Y(张海艳), Dong S-T(董树亭), Gao R-Q(高荣岐), Li Y-Q(李玉全). . Starch accumulation and enzymes activities associated with starch synthesis in maize kernels. Sci Agric Sin(中国农业科学), 2008, 41(7): 2174-2181 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.4522]
[36] Emes M J, Bowsher C G, Hedley C, Burrell M M, Tetlow I J. . Starch synthesis and carbon partitioning in developing endosperm. J Exp Bot, 2003, 54: 569-575 [本文引用:2] [JCR: 5.364]
[37] Pan Y-Z(潘远智), Jiang M-Y(江明艳). . Effects of shade on the photosynthetic character istics and growth of poinsettia. Acta Hortic Sin(园艺学报), 2006, 33(1): 95-100 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.0948]
[38] Mou H-R(牟会荣), Jiang D(姜东), Dai T-B(戴廷波), Zhang C-X(张传辉), Jing Q(荆奇), Cao W-X(曹卫星). . Effects of shading on wheat grain starch quality and redistribution of pre-anthesis stored nonstructural carbohydrates. Chin J Appl Ecol(应用生态学报), 2009, 20(4): 806-810 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.7261]
[39] Zhang J-W(张吉旺), Dong S-T(董树亭), Wang K-J(王空军), Hu C-H(胡昌浩), Liu P(刘鹏). . Effects of shading on the growth, development and grain yield of summer maize. Chin J Appl Ecol(应用生态学报), 2006, 17(4): 657-662 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.7261]
[40] Zheng H-J(郑洪建), Dong S-T(董树亭), Wang K-J(王空军), Hu C-H(胡昌浩), Zhang J-W(张吉旺). . Effects of ecological factors on maize (Zea mays L. ) yield of different varieties and corresponding regulative measure. Acta Agron Sin(作物学报), 2001, 27(6): 862-868 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.8267]
[41] Jin Z-Q(金之庆), Ge D-K(葛道阔), Zheng X-L(郑喜莲), Chen H(陈华). . Assessing the potential impacts of global climate change on maize production in China. Acta Agron Sin(作物学报), 1996, 22(5): 513-524 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.8267]
[42] Zhang J-W(张吉旺), Dong S-T(董树亭), Wang K-J(王空军), Hu C-H(胡昌浩), Liu P(刘鹏). . Effects of shading in field on key enzymes involved in starch synthesis of summer maize. Acta Agron Sin(作物学报), 2008, 34(8): 1470-1474 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.8267]
[43] Shen L-X(申丽霞), Wang P(王璞), Lan L-W(兰林旺), Sun X-H(孙西欢). . Effect of nitrogen supply on dry matter productivity and kernel set in summer maize (Zea mays L. ) with different plant populations. Acta Agric Boreali-Sin(华北农学报), 2007, 22(1): 137-140 (in Chinese with English abstract) [本文引用:1] [CJCR: 2.0855]
[44] Andrade F H, Uhart S A. . Nitrogen deficiency in maize: II. Carbon-nitrogen interaction effects on kernel number and grain yield. Crop Sci, 1995, 35: 1384-1389 [本文引用:1] [JCR: 1.641]