杂交大豆生殖生长期冠层生理及产量构成特征
张伟, 赵婧, 邱强, 王曙明, 张春宝, 闫晓艳*, 赵丽梅*, 张鸣浩, 张伟龙, 樊慧梅
吉林省农业科学院大豆研究所 / 大豆国家工程研究中心, 吉林长春 130033

* 通讯作者(Corresponding authors): 闫晓艳, E-mail:yanxy8548@yahoo.com.cn, Tel: 0431-87063238; 赵丽梅, E-mail:l_mzhao@126.com.cn, Tel: 0431-87063125

第一作者联系方式: E-mail:zw.0431@163.com

摘要

以吉林省审定的杂交豆1号、杂交豆2号2个杂交大豆品种和同熟期常规品种吉育72和吉林30为材料, 探讨生殖生长期杂交大豆高产冠层生理, 分析产量构成特性, 明确杂交大豆增产部分生理机制。结果表明, 2010—2011年, 杂交大豆比常规品种分别增产13.9%和16.7%。杂交大豆R6期以后叶片叶绿素含量, R2 (始花期)~R7 (成熟初期)期光合速率和R2~R4 (盛荚期)期叶面积指数均显著高于常规品种, 2010年杂交豆1号和杂交豆2号最大叶面积指数分别为8.09和8.30, 远高于常规大豆最大适宜叶面积指数, 且生育后期叶面积指数没有陡然下降。杂交大豆品种R2~R7期生物产量均显著或极显著高于常规品种, 生物产量平均积累速度和最大积累速度分别比常规品种高0.06 g d-1和0.20 g d-1, 干物质积累速率加快时间和积累速率开始减缓时间分别比常规品种提前3.09 d和5.85 d, 干物质积累早发优势显著。杂交大豆百粒重、主茎荚、粒重与常规大豆差异不显著, 但分枝荚、粒重极显著增加。而杂交大豆R7期籽粒占生物产量比例和粒茎比与常规品种差异不显著。表明强大的冠层优势, 快速的干物质积累和较高生物产量, 是杂交大豆高产的生物学基础。

关键词: 杂交大豆; 高产; 冠层生理; 产量构成
Canopy Physiology and Characteristics of Yield Components during Reproductive Stage in Soybean Hybrids
ZHANG Wei, ZHAO Jing, QIU Qiang, WANG Shu-Ming, ZHANG Chun-Bao, YAN Xiao-Yan*, ZHAO Li Mei*, ZHANG Ming-Hao, ZHANG Wei-Long, FAN Hui-Mei
Soybean Research Institute, Jilin Academy of Agricultural Sciences / National Engineering Research Center of Soybean, Changchun 130033, China
Abstract

Utilization of soybean hybrid is an effective way to increase soybean yield. We used two soybean hybrids (HybSoy-1 and HybSoy-2) and two conventional varieties (CV) with the same maturity (Jiyu 72 and Jilin 30) as materials to explore physiological characters of canopy, traits of yield and yield components, and the physiological mechanism of increasing yield in soybean hybrid at reproductive stage. The result showed that, from 2010 to 2011, compared with CV, the yields of soybean hybrids were increased by 13.9% and 16.7%. Leaf chlorophyll contents at late growth stages, photosynthetic rates at R2 (full bloom)-R7 (beginning maturity) and leaf area indices (LAI) at R2-R4 (full pod) were all significantly higher than those of CV; the maximum LAI of HybSoy-1 and HybSoy-2 in 2010 were 8.09 and 8.30, far more than those of CV, and LAI at late growth stages were not decreased sharply. Biomasses of all varieties reached a peak at R6 stage, while those of soybean hybrids at R2-R7 were higher than those of conventional varieties with significant difference between them atP<0.05 andP<0.01; the means and maximum accumulation rates of biomasses were 0.06 g d-1 and 0.20 g d-1 more than those of conventional varieties, respectively; and the days of speeding up or slowing down dry matter accumulation rate were ahead of 3.09 days and 5.85 days than those of CV, respectively, so premature advantage of dry matter accumulation was also obvious. As for yield components, there was no significant difference between hybrids and conventional soybean varieties on 100-seed weight, grain weight and pod weight of main stem, but grain weight and pod weight of branch in soybean hybrids were significantly higher than those in conventional varieties. There was no significant difference in the ratio of grain weight to biomass and the ratio of grain weight to stem weight between soybean hybrids and conventional soybean varieties. All results showed that the yields of soybean hybrids mainly depend on the strong canopy, high speed of dry matter accumulation, and higher biomass.

Keyword: Soybean hybrids; High yield; Canopy physiology; Yield components

杂种优势的利用是大幅度提高农作物产量的有效手段, 水稻、玉米、高粱等作物的杂交种应用, 对世界粮食增产起了重要作用[ 1]。大豆的杂交种同样具有较高的产量优势。Guleria等[ 2]以13个亲本配制30个组合的研究结果表明, F1籽粒产量的杂种优势为22.1%。Randall等[ 3]采用核不育系生产杂种进行杂种优势测定结果显示, 27个组合中有5个组合杂种产量明显高于高亲。王志新等[ 4]对199个组合的杂种优势测定结果显示, 高亲与对照优势率均在20%以上的组合占34%。王曙明等[ 5]对国内1326个组合杂种优势的测定结果表明, 高亲与对照优势率均在20%以上的组合占18.3%。

美国较早开展大豆杂种优势研究, 但至今没有育成可商业化的杂交种[ 6]。我国大豆杂种优势利用研究起步较晚, 但发展较快, 吉林省农业科学院、南京农业大学及安徽省农业科学院等单位大豆杂种优势利用研究在国际上已经形成了群体优势[ 7]。吉林省农业科学院于1993年育成世界上第一个大豆细胞质雄性不育系, 并于1995年实现栽培大豆“三系”配套, 2002年育成并审定了世界上第一个大豆杂交种[ 8], 目前我国已审定10个大豆杂交种, 均具有显著增产效果。

超高产杂交水稻光能和CO2利用效率、抗光抑制能力、C4途径酶表达水平明显增高[ 9, 10]; 群体动态、抗倒力、库容等方面也具有较大优势[ 11, 12, 13]; 抽穗前、后的物质生产能力以及灌浆后期的光合功能和收获指数是超高产杂交稻高产的关键[ 14, 15]。高产玉米干物质积累量大、光合效率高、功能期长的群体特征是获得高产的重要保证[ 16, 17, 18]。自从杂交大豆问世以后, 研究表明杂交豆1号自我调节能力强, 个体发育明显好于常规品种[ 8], 杂优豆1号具有茎秆粗壮, 分枝较多特点[ 19]。对杂交大豆高产特性也只在品种选育时有一些感性认识, 但对其增产农艺和生理机制知之甚少。杂交豆1号和杂交豆2号具有显著增产效果, 比区试对照平均增产15%以上[ 20, 21], 本研究以这2个杂交大豆品种和同熟期组区试对照品种为试材, 分析其生殖生长期高产冠层生理及产量构成特性, 明确其增产生理机制, 以期为品种改良和高产高效栽培提供依据。

1 材料与方法
1.1 供试材料

选用生育期和结荚习性相同的杂交大豆品种杂交豆1号、杂交豆2号及2个常规品种吉育72和吉林30, 品种特征见表1

表1 供试品种特征 Table 1 Traits of experimental cultivars
1.2 试验设计

试验于2010—2011年在吉林省农业科学院公主岭试验地进行。土壤类型为薄层黑土, 0~30 cm土壤含有机质28.50 g kg-1、全氮1.60 g kg-1、胺态氮3.72 mg kg-1、硝态氮2.63 mg kg-1、速效磷45.2 mg kg-1、速效钾136.0 mg kg-1。小区为6行区, 行长5 m, 行距60 cm, 密度每公顷20万株, 小区按随机区组排列, 3次重复。播种时间5月1日, 收获时间10月5日。每公顷施纯氮60 kg、纯磷75 kg、纯钾75 kg, 正常田间管理。

1.3 叶绿素和光合速率测定

盛花期(R2)到成熟初期(R7), 于晴好天气, 测定时间为9:00~11:30, 采用活体叶绿素测定仪(SPAD502)测定4个生育时期植株主茎倒五叶叶片的叶绿素含量, 每期测定6株。采用LI-6400型便携式光合测定系统(LI-COR, 美国)在相同时期测定不同生育时期植株主茎倒五叶叶片的光合速率, 测定4株。

1.4 冠层参数测定

于主要生育时期使用LAI-2000冠层分析仪, 测定叶面积指数(LAI)和冠层的无截获散射(DIFN), 2010年测定5个时期, 2011年测定4个时期, 每小区测3个点, 计算平均值。

1.5 生物产量测定及Logistic模型分析

于盛花期(R2)到成熟初期(R7)主要生育时期, 取有代表性的植株6株, 将样品放入105℃烘箱中烘2 h, 在75℃烘箱中烘干至恒重后称得干重, 即得生物产量。2010年取样5次, 2011年取样4次。采用不同时期生物产量进行Logistic模拟, 其模型的数学表达式为 Y= Wm/(1 + ae- bt), 式中 t为出苗后的天数(d); Y为大豆干物质积累量(g); a b Wm是3个待定系数, 均具有一定的生物学意义[ 22]

1.6 测产和室内考种

大豆成熟时每小区取中间2行, 每行取4.5 m, 进行小区测产, 测产面积为5.4 m2, 折算为公顷产量。2010年, 每小区分别连续取有代表性的植株10株, 测定株高、真叶节茎粗、分枝数、分枝荚重、分枝粒重、主茎荚重、主茎粒重、百粒重和茎重。2011年, 每小区取10株样, 将分枝与主茎分开, 主茎分别按上数1~5节, 6~10节, 11节以上分段考种, 所考性状同2010年。

1.7 数据分析

以Microsoft Excel 2010、DPS11.0软件分析和处理数据。

2 结果与分析
2.1 光合特性

各品种叶绿素含量均以R6期最大, 杂交豆1号和杂交豆2号在R4期以前显著高于吉育72, 与吉林30的差异未达显著水平, R6期以后, 杂交大豆品种叶绿素含量显著高于2个常规品种(图1)。

图1 不同生育时期大豆叶片叶绿素含量柱上小写字母不同表示在0.05水平上差异显著。Fig. 1 Leaf chlorophyll content of soybean at different stagesBars superscripted by different lowercase are significantly different at P<0.05.

各品种光合速率在R5期达最大, 从R2期开始2个杂交大豆品种均显著高于常规品种(图2)。R7期时杂交大豆品种两年光合速率平均值为15.03 μmol CO2m-2s-1, 常规品种已下降至8.47 μmol CO2m-2s-1, 杂交大豆品种极显著高于常规品种。

图2 不同生育时期大豆叶片光合速率柱上小写字母不同表示在0.05 水平上差异显著。Fig. 2 Photosynthetic rate of soybean at different stagesBars superscripted by different lowercase are significantly different at P<0.05.

2.2 叶面积指数和无截获散射

不同生育时期各品种叶面积指数(LAI)变化趋势相同, R3期群体LAI最大, 而后逐渐下降。R2~R5期杂交大豆LAI均显著高于常规品种, R6期以后杂交大豆叶面积与常规品种差异不显著(图3)。最大LAI, 杂交豆1号和杂交豆2号分别达8.09和8.30,

吉育72和吉林30分别为7.30和5.98, 杂交大豆最大LAI远大于通常大豆, 但其高的叶面积指数并没有使R6~R7期LAI显著低于常规品种。

无截获散射(DIFN)是LAI-2000冠层分析仪探头可视天空的部分, 代表群体透光率。群体透光率与叶面积指数相反, 不同生育时期各品种DIFN呈现下凹的单峰曲线变化, R2~R5期杂交大豆DIFN显著低于常规品种, R6期以后与常规品种差异不显著(图4)。叶面积指数最大时即R3期, 杂交豆1号和杂交豆2号DIFN相同, 均为0.07%, 说明最大叶面积指数达8以上时, 冠层最下部就很难接受到太阳光了。

图3 不同生育时期大豆叶面积指数柱上小写字母不同表示在0.05 水平上差异显著。Fig. 3 Leaf area index (LAI) of soybean at different stagesBars superscripted by different lowercase are significantly different at P<0.05.

图4 不同生育时期大豆无截获散射柱上小写字母不同表示在0.05水平上差异显著。Fig. 4 Diffuse non-interceptance (DIFN) of soybean at various growth stagesBars superscripted by different lowercase are significantly different at P<0.05.

2.3 生物产量

各品种生物产量均在R6期最大(图5)。杂交大豆品种R2~R7期生物产量均显著或极显著高于常规品种。根据各时期生物产量, 用Logistic方程动态模拟(表2), 杂交大豆品种两年生物产量平均积累速度( V)和最大积累速度( Vm)分别为0.49 g d-1和1.20 g d-1, 常规品种两年 V Vm分别为0.43 g d-1和1.00 g d-1, 杂交大豆 V Vm均显著高于常规品种。杂交大豆品种平均干物质积累速率加快时间(t1)和干物质积累速率开始减缓的时间(t2)分别比常规品种提前3.09 d及5.85 d。说明杂交大豆前期干物质积累速度较快, 早发优势明显。

图5 不同生育时期大豆生物产量柱上小写字母不同表示在0.05 水平上差异显著。Fig. 5 Biomass of soybean at different stagesBars superscripted by different lowercase are significantly different at P<0.05.

表2 单株生物产量积累的Logistic模型及其特征值 Table 2 Logistic equation and its feature of dry matter accumulation per plant
2.4 农艺性状

杂交大豆株高与常规大豆差异不显著, 两年杂交大豆株高87.1~106.5 cm, 常规品种株高105.3~ 117.9 cm。杂交大豆分枝数和茎粗显著高于常规品种, 杂交大豆平均分枝数2.3个, 常规大豆平均分枝数0.42个。杂交大豆结荚高度显著低于常规品种, 杂交大豆平均为22.8 cm, 常规大豆平均为26.7 cm。杂交大豆与常规品种的百粒重差异不显著(表3)。

表3 大豆农艺性状 Table 3 Agronomic traits of soybean
2.5 产量及构成因素

杂交大豆品种平均产量均显著高于常规品种, 2010—2011年分别增产13.9%和16.7% (图6)。杂交大豆1号倒数6~10节及杂交大豆2号倒数1~10节位荚、粒重显著高于吉育72, 但与吉林30差异不显著(表4)。杂交大豆主茎荚、粒总重与常规大豆差异不显著(表4图7)。杂交大豆分枝荚、粒重分别为4.6 g和3.4 g, 常规大豆分别为1.05 g和0.68 g, 分枝荚、粒重均极显著高于常规品种(图8)。说明分枝粒重对杂交大豆高产贡献较大。

图6 不同品种产量柱上小写字母不同表示在0.05 水平上差异显著。Fig. 6 Yield of each soybean cultivarBars superscripted by different lowercase are significantly different at P<0.05.

图7 2011年大豆主茎荚、粒重柱上小写字母不同表示在0.05 水平上差异显著。Fig. 7 Pod weight and grain weight per plant on main stem in 2011Bars superscripted by different lowercase are significantly different at P<0.05.

图8 不同品种分枝荚、粒重PWPPB: 单株分枝荚重; SWPPB: 单株分枝粒重。柱上小写字母不同表示在0.05 水平上差异显著。Fig. 8 Pod weight and grain weight per plant on branch of each cultivarPWPPB: pods weight per plant on branch; SWPPB: grain weight per plant on branch. Bars superscripted by different lowercase are significantly different at P<0.05.

表4 2010年不同品种主茎荚、粒重分布 Table 4 Distribution of pod weight and grain weight on main stem of each cultivar in 2010 (g)
2.6 收获指数

杂交大豆与常规品种R7期籽粒占各器官比例和粒茎比差异均不显著(图9图10)。说明杂交大豆虽然生物产量高, 经济系数并没有显著提高。

3 讨论
3.1 冠层特性

光合指标和叶面积指数是衡量光合产物多少及群体结构优势的重要指标, 光合速率也与产量呈正相关[ 23, 24], 且生育后期的光合功能直接影响籽粒产量[ 25, 26, 27]。叶面积指数动态决定获得光能最佳态势, LAI过大、过小或猛升、陡降, 均难获得高产[ 28, 29, 30]。大豆高产群体的最大叶面积指数一般为5~6, 甚至大于6[ 31]。本研究中杂交大豆R6期以后叶绿素含量, R2~R7期光合速率和R2~R4期叶面积指数均显著高于常规品种, 其中杂交大豆R7期光合速率极显著高于常规品种。杂交大豆R3期最大叶面积指数已超过8, 高于适宜最大叶面积指数。杂交大豆株高与常规品种相似, 高叶面积指数与杂交大豆三出复叶叶面积较大和分枝上生长较多叶片有关。2010年本课题采用杂交豆2号品种, 初花期喷施生长抑制剂多效唑(PP333)和稀效唑(S3307), 控制最大叶面积指数, 结果显著提高了杂交大豆产量(图11)。说明杂交大豆在叶面积指数最大时群体结构是有些郁闭的。但本文结果表明, 郁闭冠层没有使生育后期杂交大豆叶面积指数陡降, R5~R7期叶面积指数与常规大豆差异不显著, 说明杂交大豆的群体耐阴蔽能力较强。因此, 高光合速率和叶面积指数动态使杂交大豆群体叶片的保绿期显著增强, 说明叶片的保绿期与品种产量密切相关[ 32, 33, 34]。以上分析表明, 今后育种中通过缩小三出复叶面积或化控栽培方法, 在保障杂交大豆功能优势同时改善群体结构, 可进一步提高其产量潜力。

图9 R7期大豆籽粒占生物产量比例柱上小写字母不同表示在0.05 水平上差异显著。Fig. 9 Ratio of grain weight to biomass of soybean at R7 stageBars superscripted by different lowercase are significantly different at P<0.05.

图10 大豆成熟期粒茎比柱上小写字母不同表示在0.05 水平上差异显著。Fig. 10 Ratio of grain weight to stem weight of soybeanBars superscripted by different lowercase are significantly different at P<0.05.

图11 喷施生长抑制剂对杂交大豆2号产量影响柱上小写字母不同表示在0.05 水平上差异显著。Fig. 11 Effects of spraying growth inhibitor on yield of soybean hybridsBars superscripted by different lowercase are significantly different at P<0.05.

3.2 生物产量及经济系数

作物的经济产量由生物产量与经济系数共同决定, 研究表明, 要提高产量必须提高生物学产量[ 35, 36, 37, 38, 39, 40], 但对经济系数研究结果不一致[ 37, 38, 39, 40]。杂交大豆品种R2~R7期生物产量均显著或极显著高于常规品种, 其平均积累速度和最大积累速度分别比常规品种大0.06 g d-1和0.20 g d-1, 且干物质快速积累时间提前, 积累早发优势明显。杂交大豆R7期籽粒占生物产量比例以及粒茎比与常规大豆差异不显著。说明杂交大豆生物产量提高对产量贡献较大。

3.3 农艺性状及产量构成

产量是产量构成因素相互协调的结果, 其贡

献大小结论并不一致, 一些学者认为单株籽粒数量更重要[ 41, 42], 另一些学者认为百粒重更重要[ 43, 44], 还有的认为分枝籽粒对产量贡献较大[ 45]。杂交大豆茎粗和分枝数显著高, 其分枝主要为长分枝, 高度比主茎略低, 荚、粒数较多, 植株最低结荚主要生长在分枝上。植株荚、粒重分布表明, 杂交大豆主茎6~10节荚、粒分布显著高, 但由于主茎下部荚、粒重略低, 使主茎荚、粒重与常规品种差异未达显著水平。但杂交大豆分枝数荚、粒重极显著高于常规品种。说明杂交大豆分枝产量对其产量贡献较大。

4 结论

杂交大豆与常规大豆相比, 生殖生长期光合速率和LAI显著提高, 增加了群体叶片保绿期; 生物产量积累速度显著增加, 干物质积累早发优势显著; 保障主茎籽粒产量同时, 使分枝获得较高的产量。因此, 强大的冠层生理优势和高生物产量是杂交大豆获得高产的生物学基础。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.

参考文献
[1] Xu Z-Y(许占友), Li L(李磊), Qiu L-J(邱丽娟), Chang R-Z(常汝镇), Wang M-B(汪茂斌), Li Z(李智), Guo P(郭蓓). Selection of three lines and localization of the restorer genes in soybean using SSR markers. Sci Agric Sin(中国农业科学), 1999, 32(2): 32-38 (in Chinese with English abstract) [本文引用:1]
[2] Guleria S K, Awa T D, Sharma B K. Heterotic performance of soybean crossesin F1 and F2 generations. Res Crops, 2000, 1: 245-248 [本文引用:1] [JCR: 2.474]
[3] Rand all L R, Bernard R L. Production and performance of hybrid soybeans. Crop Sci, 1984, 24: 549-55 [本文引用:1] [JCR: 1.641]
[4] Wang Z-X(王志新), Guo T(郭泰), Qi N(齐宁), Zhang R-C(张荣昌), Hu X-P(胡喜平), Wu X-H(吴秀红). Selection of high-superiority cross combination for soybean heterosis and its stability analysis. Chin Agric Sci Bull(中国农学通报), 2001, 17(2): 27-29 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.7823]
[5] Wang S-M (王曙明), Sun H(孙寰), Wang Y-Q(王跃强), Zhao L-M(赵丽梅), Li N(李楠). Studies on heterosis and screening of highly heterotic combinations in soybean. Soybean Sci(大豆科学), 2002, 21(3): 161-167 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.7571]
[6] Wang S-M(王曙明), Fan X-H(范旭红), Zhang B-S(张宝石). Status on exploitation of heterosis in soybean in foreign countries. Crops(作物杂志), 2009, (5): 84-86 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.6276]
[7] Wang S-M(王曙明), Sun H(孙寰), Zhao L-M(赵丽梅), Wang Y-Q(王跃强), Peng B(彭宝), Fan X-H(范旭红), Zhang B-S(张宝石). Progress and problem analysis on soybean male sterility and heterosis exploitation in China. Soybean Sci(大豆科学), 2009, 28(6): 1089-1095 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.7571]
[8] Zhao L-M(赵丽梅), Peng B(彭宝), Cheng Y-X(程延喜), Sun H(孙寰), Wang S-M(王曙明), Zhang W-L(张伟龙), Zhang J-Y(张井勇). A review on soybean heterosis and its utilization. Soybean Bull(大豆通报), 2008, (1): 1-3 (in Chinese) [本文引用:2]
[9] Wang Q(王强), Lu C-M(卢从明), Zhang Q-D(张其德), Hao B(郝斌), Ge Q-Y(戈巧英), Dong F-Q(董风琴), Bai K-Z(白克智), Kuang T-Y(匡廷云). Studies on the photosynthesis and photoinhibition and the activities of C4pathway enzymes in super high yielding hybrid rice Liangyoupeijiu. Sci China (Ser C)(中国科学: C辑), 2002, 32(6): 482-487 (in Chinese with English abstract) [本文引用:1]
[10] Jiang H, Wang X H, Deng Q Y, Xu D Q. Comparison of some photosynthetic characters between two hybrid rice combinations differing in yield potential. Photosynthetica, 2002, 40: 133-137 [本文引用:1] [JCR: 1.0]
[11] Ou Z-Y(欧志英), Peng C-L(彭长连), Lin G-Z(林桂珠). The characteristics of photooxidation and genetic performance in leaves of super high yielding hybrid rice Pei’ai 64S/E32 and its parental lines. Acta Agron Sin(作物学报), 2004, 30(4): 308-314 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.8267]
[12] Wang R-F(王荣富), Zhang Y-H(张云华), Jiao D-M(焦德茂), Qian L-S(钱立生), Yu J-L(于江龙). Characteristics of photoinhibition and early aging in super-hybrid rice (Oryza sativa L. ) “Liangyoupeijiu” and its parents at late development stage. Acta Agron Sin(作物学报), 2004, 30(4): 393-397 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.8267]
[13] Zhang H-C(张洪程), Wu G-C(吴桂成), Li D-J(李德剑), Xiao Y-C(肖跃成), Gong J-L(龚金龙), Li J(李杰), Dai Q-G(戴其根). Population characteristics and formation mechanism for super- high-yielding hybrid japonica rice (13. 5 t ha-1). Acta Agron Sin(作物学报), 2010, 36(9): 1547-1558 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.8267]
[14] Wu G-C(吴桂成), Zhang H-C(张洪程), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Gao H(高辉), Wei H-Y(魏海燕), Sha A-Q(沙安勤), Xu Z-J(徐宗进), Qian Z-H(钱宗华), Sun J-Y(孙菊英). Characteristics of dry matter production and accumulation and super-high yield of japonica super rice in south china. Acta Agron Sin(作物学报), 2010, 36(11): 1921-1930 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.8267]
[15] Cheng S-H(程式华), Cao L-Y(曹立勇), Chen S-G(陈深广), Zhu D-F(朱德峰), Wang X(王熹), Min S-K(闵绍楷), Zhai H-Q(翟虎渠). Conception of late-stage vigor super hybrid rice and its biological significance. Chin J Rice Sci(中国水稻科学), 2005, 19(3): 280-284 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.4083]
[16] Huang Z-X(黄振喜), Wang Y-J(王永军), Wang K-J(王空军), Li D-H(李登海), Zhao M(赵明), Liu J-G(柳京国), Dong S-T(董树亭), Wang H-J(王洪军), Wang J-H(王军海), Yang J-S(杨今胜). Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15000 kg·ha-1. Sci Agric Sin(中国农业科学), 2007, 40(9): 1898-1906 (in Chinese with English abstract) [本文引用:1]
[17] Zhang W(张伟), Xie F-T(谢甫绨), Zhang H-J(张惠君), Song X-J(宋显军), Wang H-J(王海英). Canopy and yield characteristics of super-high-yielding soybean cv. Liaodou No. 14. Sci Agric Sin(中国农业科学), 2007, 40(11): 2460-2467 (in Chinese with English abstract) [本文引用:1]
[18] Huang Z-H(黄智鸿), Wang S-Y(王思远), Bao Y(包岩), Liang X-H(梁煊赫), Sun G(孙刚), Shen L(申林), Cao Y(曹洋), Wu C-S(吴春胜). Studies on dry matter accumulation and distributive characteristic in super high-yield maize. J Maize Sci(玉米科学), 2007, 15(3): 95-98 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.0045]
[19] Zhang L(张磊), Dai Z-H(戴瓯和), Huang Z-P(黄志平), Li J-K(李杰坤), Zhang L-Y(张丽亚), Hu C(胡晨). Breeding of hybrid soybean Zayoudou No. 1. Soybean Bull(大豆通报), 2007, 87(2): 14-16 (in Chinese) [本文引用:1]
[20] Peng B(彭宝), Zhao L-M(赵丽梅), Wang S-M(王曙明), Zhang W-L(张伟龙), Zhang J-Y(张景勇), Sun H(孙寰). High production hybrid soybean new variety Hybsoy 2 and hybrid seed production technology. Soybean Bull(大豆科技). 2008, 4: 46-47(in Chinese) [本文引用:1] [CJCR: 0.4815]
[21] Zhao L-M(赵丽梅), Sun H(孙寰), Wang S-M(王曙明), Wang Y-Q(王跃强), Huang M(黄梅), Li J-P(李建平). Breeding of hybrid soybean Hybsoy 1. Chin J Oil Crop Sci(中国油料作物学报), 2004, 26(3): 15-17 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.1971]
[22] Song Z-X(宋珍霞), Gao M(高明), Guan B-Q(关博谦), Xu A-D(许安定), Dai X-Q(代先强). Simulating the dynamics of dry matter and nutrient accumulation of flue-cured tobacco under different boron concentration. Plant Nutr Fert Sci(植物营养与肥料学报), 2006, 12(4): 565-570 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.4752]
[23] Jiang G M, Hao N B, Bai K Z, Sun J Z, Guo R J, Ge Q Y, Kuang T Y. Chain correlation between variables of gas exchange and yield potential in different winter wheat cultivars. Photosynthetica, 2000, 38: 227-232 [本文引用:1] [JCR: 1.0]
[24] El-Sharkawy M A, Cock J H, Lynam J K, Hernand ez A D P, Cadavid L F. Relationship between biomass, root yield and single leaf photosynthesis in field grown cassava. Field Crops Res, 1990, 25: 183-190 [本文引用:1] [JCR: 2.474]
[25] Khan M N A, Murayama S, Ishimine Y, Tsuzuki E, Nakamura L. Physio-mornhotoloiaical studies of F1hybrids in rice (Oryza sativa L. ). photosynthetic ability and yield. Plant Prod Sci, 1998, 4: 233-239 [本文引用:1] [JCR: 1.0]
[26] Bjorn M, Kebede H, Rilling C. Photosynthetic differences among Lycopersicon species and Triticum aestivum cultivars. Crop Sci, 1994, 34: 113-118 [本文引用:1] [JCR: 1.641]
[27] Huang Z-X(黄振喜), Wang Y-J(王永军), Wang K-J(王空军). Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15000 kg hm-2. Sci Agric Sin(中国农业科学), 2007, 40(9): 1898-1906 (in Chinese with English abstract) [本文引用:1]
[28] Dong Z(董钻). Soybean Yield Physiology (大豆产量生理). Beijing: China Agriculture Press, 2001. pp46-49(in Chinese) [本文引用:1]
[29] Malone S D, Herbert A J, David L H. Evaluation of the LAI-2000 plant analyzer to estimate leaf area in manually defoliated soybean. Agron J, 2002, 94: 1012-1019 [本文引用:1] [JCR: 1.794]
[30] Westgate J M. Managing soybean for photosynthetic efficiency. In: Kauffman H E ed. 6th World Soybean Research Conference. Chicago, IL: Superior Print, Champaign II, 1999. pp223-228 [本文引用:1]
[31] Dong Z(董钻), Bin Y-Q(宾郁泉), Sun L-Q(孙连庆). The comparative study on soybean varieties productivity. J Shenyang Agric Univ(沈阳农业大学学报), 1979, (1): 37-47 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.5722]
[32] Li D-H(李登海), Zhang Y-H(张永慧), Yang J-S(杨今胜). Integrate the breeding and planting, maize hybrids of erectophile type creates high-yielding. J Maize Sci(玉米科学), 2004, 12(1): 69-71 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.0045]
[33] Jorge B. Physiological bases for yield differences in selected maize cultivars from Central America. Field Crops Res, 1995, 42: 69-80 [本文引用:1] [JCR: 2.474]
[34] Duvick D N. Genetic contributions to advances in yield in US maize. Maydica, 1992, 37: 69-79 [本文引用:1] [JCR: 0.395]
[35] Zhang Y B, Tang Q Y, Zou Y B, Li D Q, Qin J Y, Yang S H, Chen L J, Xia B, Peng S B. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res, 2009, 114: 91-98 [本文引用:1] [JCR: 2.474]
[36] Kumudini S, Hume D J, Chu G. Genetic improvement in short season soybeans: I. dry matter accumulation, partitioning, and leaf area duration. Crop Sci, 2001, 41: 391-398 [本文引用:1] [JCR: 1.641]
[37] Wei J-J(魏建军), Luo G-T(罗赓彤), Zhang L(张力), Wang X-G(王晓光), Dong Z(董钻). Physiological parameters of super-high yielding soybean cultivar Zhonghuang 35. Acta Agron Sin(作物学报), 2009, 35(3): 506-511 (in Chinese with English abstract) [本文引用:2] [CJCR: 1.8267]
[38] Liu J-F(刘建丰), Yuan L-P(袁隆平), Deng Q-Y(邓启云), Chen L-Y(陈立云), Cai Y-D(蔡义东). A study on characteristics of photosynthesis in super high yielding hybrid rice. Sci Agric Sin(中国农业科学), 2005, 38(2): 258-264 (in Chinese with English abstract) [本文引用:2] [CJCR: 1.4522]
[39] Yang H-J(杨惠杰), Li Y-Z(李义珍), Yang R-C(杨仁崔), Jiang Z-W(姜照伟), Zheng J-S(郑景生). Dry matter production characteristics of super high yielding rice. Chin J Rice Sci(中国水稻科学), 2001, 15(4): 265-270 (in Chinese with English abstract) [本文引用:2] [CJCR: 1.4083]
[40] Wu W-G(吴文革), Zhang H-C(张洪程), Qian Y-F(钱银飞), Chen Y(陈烨), Xu J(徐军), Wu G-C(吴桂成), Zhai C-Q(翟超群), Huo Z-Y(霍中洋), Dai Q-G(戴其根). Analysis on dry matter production characteristics of middle-season indica super hybrid rice. Chin J Rice Sci(中国水稻科学), 2007, 21(3): 287-293 (in Chinese with English abstract) [本文引用:2] [CJCR: 1.4083]
[41] Liu X, Jin J, Herbert S J, Zhang Q, Wang G. Yield components, dry matter, LAI, and LAD of soybeans in Northeast China. Field Crops Res, 2005, 93: 85-93 [本文引用:1] [JCR: 2.474]
[42] De Bruin J L, Pedersen P. Growth, yield, and yield component changes among old and new soybean cultivars. Agron J, 2009, 101: 123-130 [本文引用:1] [JCR: 1.794]
[43] Gay S, Egli D B, Reicosky D A. Physiological basis of yield improvement in soybeans. Agron J, 1980, 72: 387-391 [本文引用:1] [JCR: 1.794]
[44] Cui Y S, Yu D Y. Estimates of relative contribution of biomass, harvest index, and yield components to soybean yield improvements in China. Plant Breed, 2005, 124: 473-476 [本文引用:1] [JCR: 1.596]
[45] Rigsby B, Board J E. Identification of soybean cultivars that yield well at low plant populations. Crop Sci, 2003, 43: 234-239 [本文引用:1] [JCR: 1.641]