结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响
付景1,2, 刘洁1, 曹转勤1, 王志琴1, 张耗1, 杨建昌1,*
1扬州大学江苏省作物遗传生理重点实验室, 江苏扬州225009
2河南省农业科学院粮食作物研究所, 河南郑州450002
* 通讯作者(Corresponding author): 杨建昌, E-mail:jcyang@yzu.edu.cn

第一作者联系方式: E-mail:fujing8210@sina.cn

摘要

大田种植超级稻品种两优培九(两系杂交籼稻)和淮稻9号(粳稻)。自抽穗至成熟设置轻干-湿交替灌溉(WMD)、重干-湿交替灌溉(WSD)和常规灌溉(CI, 保持水层) 3种灌溉方式, 观察其对超级稻灌浆的影响。结果表明, 与CI相比, WMD处理显著增加2个超级稻品种的产量、结实s率和粒重, 而WSD处理则降低结实率和粒重。WMD处理显著提高灌浆期剑叶净光合速率、膜质过氧化酶活性和根系氧化力、根系吸收表面积、根系活跃吸收表面积、比表面积和根系中玉米素+玉米素核苷(Z+ZR)及吲哚-3-乙酸(IAA)含量及根冠比, WSD处理的结果则相反。说明结实期轻干-湿交替灌溉可以改善超级稻根系和地上部植株的生理功能, 进而提高结实率和粒重。

关键词: 超级稻; 产量; 根系活力; 光合速率; 干-湿交替灌溉
Effects of Alternate Wetting and Drying Irrigation during Grain Filling on the Seed-Setting Rate and Grain Weight of Two Super Rice Cultivars
FU Jing1,2, LIU Jie1, CAO Zhuan-Qin1, WANG Zhi-Qin1, ZHANG Hao1, YANG Jian-Chang1,*
1Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
2Cereal Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
Abstract

Two super rice cultivars, Liangyoupeijiu and Huaidao 9, were used in the study. Three irrigation regimes, including alternate wetting and moderate soil drying (WMD), alternate wetting and severe soil drying (WSD), and conventional irrigation (CI, continuous flooding), were imposed from heading to maturity. Compared with CI, WMD significantly increased, whereas WSD decreased, seed setting rate and grain weight of super rice. The photosynthetic rate, activities of membrane lipid peroxidation enzymes in the flag leaf, root oxidation activity, root absorption surface area, root active absorption area, root specific surface area, contents of zeatin + zeatin riboside (Z+ZR) and indole-3-acetic acid (IAA) in roots and the ratio of root to shoot were increased under the WMD regime, but decreased under the WSD regime. The results suggest that the WMD irrigation during grain filling could improve root and shoot physiological functions, and consequently increase the seed-setting rate and grain weight of super rice.

Keyword: Super rice; Grain yield; Root activity; Photosynthetic rate; Alternate wetting and drying irrigation
0 引言

水稻是世界上主要的粮食作物之一, 约为30亿人口提供了35%~80%的摄食热量。灌溉栽培水稻占世界水稻生产的75%。在亚洲, 大约消耗总灌溉水资源的80%[ 1, 2]。在中国, 水稻是最大的粮食作物, 也是农业生产上第一用水大户。随着人口的增长、城镇和工业的发展、人民生活水平的提高和全球气候的变化, 一方面需要不断增加单位面积产量以满足人口增长和人民生活水平日益提高的需求, 另一方面需要应对水资源日益短缺的严重问题[ 3]。如何在提高水稻产量的同时, 节约水资源?这是农业科学家面临的一个严峻挑战。

为了节约水资源, 干湿交替灌溉(AWD)作为一种新的节水技术已被许多国家所采用, 诸如中国、孟加拉国、印度和越南[ 4, 5, 6, 7]。此技术以水稻生育过程中土壤保持水层和自然落干相互交替为特征, 可以大大减少灌溉用水量, 提高水分利用率(WUE)[ 1, 6, 8, 9]。有报道称, 与保持水层灌溉相比, AWD能保持甚至提高水稻产量[ 1, 2, 5, 6, 7]。而另一方面有报道称, AWD会减少产量[ 8, 10]。目前, AWD增加或减少产量的机理尚不清楚。

水稻产量取决于库容和灌浆充实的程度[ 11]。为了增加产量和提高产量潜力, 育种家们主要通过增加每穗粒数, 即培育大穗型品种有效地扩大产量库容[ 12], 例如国际水稻研究所培育的新株型品种[ 13]、我国培育的亚种间杂交稻、超级杂交稻或超级稻品种等[ 14, 15]。超级稻品种具有强大的产量潜力, 但同时存在着结实率低或不稳定的问题, 影响其产量潜力的发挥[ 16]

植物的根系具有吸收养分水分、合成植物激素以及固定植株等功能。大量研究表明, 根系生理活性与地上部密切相关。地上部的光合作用向根部提供充足的同化物, 维持和促进根系功能, 反过来, 较高的根系活性又为地上部生长提供营养物质。这种相互依存的关系被称为根-冠相互作用[ 17, 18]。有报道称, 与保持水层灌溉相比, 干湿交替灌溉促进根系生长、籽粒灌浆和同化物向籽粒的运转, 保持甚至增加产量[ 4, 5, 6]。也有报道称, 干湿交替灌溉由于氮的损失、地上部干物重的减少和灌浆期的缩短, 导致产量降低[ 19]。在结实期采用干湿交替灌溉能否改善超级稻根系和地上部分生理功能, 进而提高超级稻的结实率和粒重?相关研究报道甚少。

本研究观察不同干湿交替灌溉模式对超级稻根系和地上部植株生理性状、结实率和粒重的影响, 以期为超级稻品种的高产栽培提供理论依据。

1 材料与方法
1.1 试验材料和栽培概况

2010—2011年在扬州大学江苏省作物栽培生理重点实验室实验农场大田种植超级稻品种两优培九(两系杂交籼稻)和淮稻9号(粳稻)。试验地前茬作物为小麦, 土壤类型为沙壤土, 0~20 cm耕层土壤(风干样)含有机质1.57%、碱解氮64.7 mg kg-1、速效磷20.4 mg kg-1、速效钾120.0 mg kg-1。于5月11日播种, 6月7日移栽。株行距为20 cm×20 cm, 两优培九单本栽, 淮稻9号双本栽。全生育期施用尿素折合纯氮240 kg hm-2, 按基肥(移栽前1 d)∶分蘖肥(移栽后7 d)∶促花肥(叶龄余数3.5)∶保花肥(叶龄余数1.5) = 5∶1∶2∶2施用。移栽前各小区施过磷酸钙(含P2O5 13.5%) 225 kg hm-2和氯化钾(含K2O 62.5%) 225 kg hm-2。自移栽到抽穗期, 除在分蘖末期搁田外, 大田保持1~2 cm水层, 全生育期严格控制病虫草害。

1.2 试验设计

依据本课题组已有研究结果, 在水稻灌浆期进行干湿交替灌溉, 土壤落干至土壤水势-15 kPa复水(轻干湿交替灌溉), 不会影响甚至可以促进籽粒灌浆; 当土壤落干至土壤水势为-30 kPa复水(重干湿交替灌溉)则会降低结实率和粒重[ 5, 6]。因此, 自抽穗(50%穗伸出剑叶叶鞘)至成熟, 设置3种灌溉模式处理: (1)自浅水层自然落干至土壤水势-15 kPa (15~ 20 cm深), 然后灌1~2 cm水层, 再落干, 如此循环, 简称轻干-湿交替灌溉(WMD, alternate wetting and moderate soil drying); (2)自浅水层自然落干至土壤水势-30 kPa (15~20 cm深), 然后灌1~2 cm水层, 再落干, 如此循环, 简称重干-湿交替灌溉(WSD, alternate wetting and severe soil drying); (3)保持浅水层2~3 cm直至收获前1周, 简称常规灌溉(CI, conventional irrigation)。3次重复, 完全随机区组排列, 小区面积为6.4 m×4.4 m。在轻干-湿交替灌溉处理和重干-湿交替灌溉处理小区安装真空表式土壤负压计(中国科学院南京土壤研究所生产), 每小区安装4个土壤负压计监测15~20 cm深土壤水势。每天12:00记录土壤水势, 当读数达到阈值时, 灌1~2 cm水层。在进水管安装水表(LXSG-50流量计, 上海水分仪表制造厂)用以监测用水量。

1.3 测定内容与方法

1.3.1 叶片光合特性 分别于抽穗期、抽穗后10、20、30 d, 各小区随机取剑叶8片混合后测定丙二醛(MDA)含量[ 20]及过氧化氢酶(CAT)[ 21]、超氧化物歧化酶(SOD)[ 22]和过氧化物酶(POD)[ 21]活性。选择晴朗无风的上午, 随机选取每品种6株, 于9:00采用美国LI-COR公司生产的LI-6400便携式光合测定仪测定稻株剑叶的净光合速率, 叶室CO2浓度为380 μmol mol-1, 使用红蓝光源, 光量子通量密度(PFD)为1400 μmol m-2 s-1, 温度为28~30℃。

1.3.2 根系生理性状 与测定叶片光合特性相同时期取样测定。为了确保取样的代表性, 在取根前考察每个小区50穴植株的分蘖数, 按照平均茎蘖数取6穴植株, 剪掉地上部分(用于测定叶面积和地上部生物量)后用自制取根器取根(每穴以稻株基部为中心, 挖取20 cm×20 cm×20 cm的土块), 装于70目的筛网袋中, 先用流水冲洗, 然后用农用压缩喷雾器将根冲洗干净, 其中2穴用来测定根干重, 2穴采用甲烯蓝蘸根法[ 23]测定根系总吸收表面积、活跃吸收表面积和比表面积等, 另外2穴用来测定根系单位根干重的α-NA氧化力[ 24]和根系激素。参照陈远平等[ 25]的高效液相色谱法并作改进提取、纯化和定量分析根系中激素: 在提取过程中用石油醚萃取去除样品中的叶绿素和脂肪等物质, 提取的样品液经过Sep-Pak C18柱过滤以减少样品中杂质; 色谱条件改用Dubhe C18 4.6×250, 5 μm, 流动相为5% (v/v)乙腈、50% (v/v)甲醇、0.6% (v/v)冰乙酸, 流速为0.8 mL min-1, 采用梯度洗脱法, 检测波长254 nm; 柱温30℃, 进样量20 μL。样品回收率为85.5%±2.6%, 每一个样品至少重复4次。以外标法定量。

1.3.3 考种与计产 取成熟期各小区50穴考察每穴穗数, 10穴观察结实率(水漂法, 沉入水底者为饱粒)和千粒重。按实收各小区计产。

1.4 数据处理

采用Microsoft Excel 2003、SPSS16.0和SAS统计软件分析试验数据, 用SigmaPlot 10.0绘图。产量和主要叶片光合特性及根系生理性状的年度、品种及处理间的交互效应的方差分析表明, 各指标年度间、年度×品种间互作效应和年度×处理间互作效应差异不显著, 而品种间、处理间和品种×处理间互作效应差异显著(表1)。因此, 文中除产量结果外, 其余数据用两年的平均值表示。

表1 产量和主要叶片光合特性及根系生理性状在年度间、品种间及处理间的方差分析 Table 1 Analysis-of-variance ( F-values) for grain yield and main leaf photosynthetic characteristics and root physiological traits of rice between/among years, cultivars, and treatments
2 结果与分析
2.1 土壤水势变化和产量及其构成因素

图1可见, WMD处理的土壤水势达到-15 kPa需要4~7 d, WSD处理的土壤水势需要7~11 d才能达到-30 kPa。在同一灌溉模式下, 两品种的土壤水势变化趋势基本一致(图1)。

三种灌溉方式处理间穗数和每穗粒数差异不显著, 而产量差异显著。与CI处理相比, WMD处理显著增加了结实率、粒重(每穗饱粒数平均重量)和产量, 而WSD处理结果则相反。2个超级稻品种变化趋势一致(表2)。

图1 结实期干湿交替灌溉的土壤水势变化CI: 常规灌溉; WMD: 轻干-湿交替灌溉; WSD: 重干-湿交替灌溉。Fig. 1 Changes in soil water potentials under alternate wetting and soil drying during grain fillingCI: conventional irrigation; WMD: alternate wetting and moderate soil drying; WSD: alternate wetting and severe soil drying.

表2 结实期干湿交替灌溉对超级稻产量及其构成因素的影响 Table 2 Effects of alternate wetting and soil drying during grain filling on grain yield and yield components of super rice
2.2 剑叶光合特性

两个超级稻品种剑叶净光合速率在花后均呈下降趋势。与CI处理相比, WMD处理显著增加了灌浆中后期剑叶的净光合速率, 而WSD处理结果则相反。2个超级稻品种变化趋势一致(图2)。

图2 结实期干湿交替灌溉对超级稻剑叶光合速率的影响CI: 常规灌溉; WMD: 轻干-湿交替灌溉; WSD: 重干-湿交替灌溉。Fig. 2 Effects of alternate wetting and soil drying during grain filling on the photosynthetic rate of flag leaf of super riceCI: conventional irrigation; WMD: alternate wetting and moderate soil drying; WSD: alternate wetting and severe soil drying.

2.3 剑叶膜质过氧化酶活性

两个超级稻品种剑叶的MDA含量在花后呈上升趋势(图3-A, B), CAT和SOD活性呈下降趋势(图3-C~F), POD活性则呈花后20 d前下降, 之后上升的趋势(图3-G, H)。与CI相比, WMD显著减少了灌浆期2个超级稻品种的MDA含量(图3-A, B), 显著增加了CAT (图3-C, D)和SOD (图3-E, F)活性, 显著增加了花后20 d前的POD活性, 但到花后30 d时, WMD却显著降低了POD活性(图3-G, H)。而WSD处理的结果则相反。2个超级稻品种变化趋势一致(图3)。

图3 结实期干湿交替灌溉对超级稻剑叶丙二醛含量(A, B)、过氧化氢酶活性(C, D)、超氧化物歧化酶(E, F)活性和过氧化物酶活性
(G, H)的影响CI: 常规灌溉; WMD: 轻干-湿交替灌溉; WSD: 重干-湿交替灌溉。
Fig. 3 Effects of alternate wetting and soil drying during grain filling on malondialdehyde (MDA) content (A, B), catalase (CAT) activity (C, D), superoxide dismutase (SOD) activity (E, F), and peroxidase (POD) activity (G, H) of super riceCI: conventional irrigation; WMD: alternate wetting and moderate soil drying; WSD: alternate wetting and severe soil drying.

2.4 根系氧化力

两个超级稻品种的单位干重根系氧化活力和每株根系氧化活力在花后均呈下降趋势。与CI相比, WMD显著增加了单位干重根系氧化活力和每株根系氧化活力, 而WSD处理的结果则相反。2个超级稻品种变化趋势一致(图4)。

图4 结实期干湿交替灌溉对超级稻根系氧化力的影响CI: 常规灌溉; WMD: 轻干-湿交替灌溉; WSD: 重干-湿交替灌溉。Fig. 4 Effects of alternate wetting and soil drying during grain filling on the root oxidation activity of super riceCI: conventional irrigation; WMD: alternate wetting and moderate soil drying; WSD: alternate wetting and severe soil drying.

2.5 根系吸收面积

两个超级稻品种的根系总吸收面积(图5-A, B)、根系活跃吸收面积(图5-C, D)和根系比表面积(图5-E, F)在花后均呈下降趋势。与CI相比, WMD显著增加了花后根系总吸收面积、根系活跃吸收面积和根系比表面积, 而WSD处理的结果则相反。2个超级稻品种变化趋势一致(图5)。

图5 结实期干湿交替灌溉对超级稻根系总吸收表面积(A, B)、活跃吸收表面积(C, D)和比表面积(E, F)的影响CI: 常规灌溉; WMD: 轻干-湿交替灌溉; WSD: 重干-湿交替灌溉。Fig. 5 Effects of alternate wetting and soil drying during grain filling on total root absorption area per plant (A, B), root active absorption area per plant (C, D), and root specific surface area(E, F) of super riceCI: conventional irrigation; WMD: alternate wetting and moderate soil drying; WSD: alternate wetting and severe soil drying.

2.6 根系激素

两个超级稻品种根系中Z+ZR含量在花后呈先增后降趋势, 在花后10 d达到高峰(图6-A, B)。IAA含量呈下降趋势(图6-C, D)。ABA含量呈先增后降趋势, 在花后20 d达到高峰(图6-E, F)。与CI相比, WMD显著增加了Z+ZR和IAA的含量, 却显著降低了ABA的含量, 而WSD处理的结果则相反。2个超级稻品种变化趋势一致(图6)。

图6 结实期干湿交替灌溉对超级稻根系玉米素+玉米素核苷 (A, B)、吲哚-3-乙酸(C, D)和脱落酸(E, F)的影响CI: 常规灌溉; WMD: 轻干-湿交替灌溉; WSD: 重干-湿交替灌溉。Fig. 6 Effects of alternate wetting and soil drying during grain filling on zeatin (Z) + zeatin riboside (ZR) concentration (A, B), indole-3-acetic acid (IAA) concentration (C, D), and abscisic acid (ABA) concentration (E, F) of super riceCI: conventional irrigation; WMD: alternate wetting and moderate soil drying; WSD: alternate wetting and severe soil drying.

2.7 根冠比

两个超级稻品种花后地上部干物重呈增加趋势(图7-A, B), 根系生物量和根冠比则均呈下降趋势(图7-C~F)。与CI相比, WMD显著增加了花后地上部干物重、根系生物量和根冠比, 而WSD处理的结果则相反。2个超级稻品种变化趋势一致(图7-A~F)。

图7 结实期干湿交替灌溉对超级稻地上部干物重(A, B)、根干重(C, D)和根-冠比(E, F)的影响CI: 常规灌溉; WMD: 轻干-湿交替灌溉; WSD: 重干-湿交替灌溉。Fig. 7 Effects of alternate wetting and soil drying during grain filling on shoot dry weight (A, B), root dry weight (C, D), and root-shoot ratio (E, F) of super riceCI: conventional irrigation; WMD: alternate wetting and moderate soil drying; WSD: alternate wetting and severe soil drying.

3 讨论

前人关于干湿交替灌溉的研究已有很多报道。与保持水层灌溉相比, 有人认为产量提高[ 5, 6, 7], 也有人认为产量降低[ 8, 10]。这些研究的差异可能是土壤水分状况和灌溉方法以及应用时间不同引起的。本研究表明, 重干-湿交替灌溉导致产量显著降低, 而轻干-湿交替灌溉下, 产量则显著提高。说明干湿交替灌溉中的土壤落干程度是影响产量的最重要因素。本试验条件下, 在结实期土壤落干至-15 kPa时复水, 能显著提高超级稻的结实率和粒重。

为什么结实期轻干湿交替灌溉(WMD)可以提高超级稻的结实率和粒重?本研究观察到, 与CI相比, WMD处理后水稻剑叶的净光合速率增加, 抗氧化酶如POD、CAT和SOD活性增强, 氧化物质MDA含量减小。而WSD处理的结果则相反。表明WMD处理后, 超级稻能及时适应环境, 使剑叶POD、SOD和CAT等酶活力维持在一个较高水平, 有利于清除自由基, 降低质膜过氧化水平, 增强细胞的抗氧化能力, 从而减轻膜的伤害。而WSD处理则降低了植株体内抗氧化能力, 造成了对水稻的伤害。

根系作为水稻植株的组成部分, 不仅是吸收水分和养分的主要器官, 也是合成某些氨基酸、激素等生理活性物质的重要场所, 在水稻生长发育过程中具有举足轻重的作用。根系形态生理与水稻地上部生长发育[ 26]、养分吸收[ 27]、产量形成[ 28]、群体抗逆性[ 29, 30]等关系密切。一般认为, 改善根系生长和根-冠相互作用有利于产量的提高[ 18]。本研究表明, 与CI相比, WMD显著提高了灌浆期地上部干

物重、根系生物量、根冠比、根系活力、根系吸收表面积、根系活跃吸收表面积、根系比表面积。根系活性的增强可以提高根系吸收水分和养分的能力, 可以为地上部生长提供更多的养分, 进而促进地上部分的生长发育[ 31]。另一方面, 地上部分生产能力的增强又为地下部分根系生长提供充足的光合同化物, 从而保持和促进根系功能的活跃[ 17]。根系吸收面积能够客观反映植株对水分、养分的吸收数量和强度。以上表明WMD处理的根冠关系相互协调和相互作用提高了产量。而WSD处理的结果则相反。

植物激素如吲哚-3-乙酸(IAA)和细胞分裂素(Z+ZR)均可在植物生长发育和产量形成中起着十分重要的作用[ 32, 33]。IAA可促进细胞伸长和调节核酸参与蛋白质的合成, 促进灌浆和同化物向籽粒运输[ 33]

细胞分裂素(Z+ZR)主要在根系中合成并运转到地上部分器官, 可促进细胞分裂, 延缓植株衰老[ 34]。本研究结果表明, WMD处理提高了超级稻根系中Z+ZR和IAA含量。这些可能是WMD促进超级稻籽粒灌浆、提高结实率的生理基础。

4 结论

与常规灌溉相比, 结实期轻干湿交替灌溉能显著提高超级稻品种的结实率和粒重, 重干湿交替灌溉则显著降低结实率和粒重。轻干湿交替灌溉可以显著提高根系氧化力、根系中Z+ZR和IAA含量、叶片光合速率和抗氧化能力, 重干湿交替灌溉处理的结果则相反。在轻干湿交替灌溉条件下, 根系和地上部生理功能的改善是超级稻结实率和粒重提高的重要生理基础。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.

参考文献
[1] Bouman B A M, Tuong T P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manag, 2001, 49: 11-30 [本文引用:3]
[2] Bouman B A M. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agric Syst, 2007, 93: 43-60 [本文引用:2] [JCR: 2.504]
[3] Lu X, Wu L, Pang L, Li Y, Wu J, Shi C, Zhang F. Effects of plastic film mulching cultivation under non-flooded condition on rice quality. J Sci Food Agric, 2007, 87: 334-339 [本文引用:1]
[4] Tuong T P, Bouman B A M, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod Sci, 2005, 8: 231-241 [本文引用:2] [JCR: 0.802]
[5] Yang J, Liu K, Wang Z, Du Y, Zhang J. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. J Integr Plant Biol, 2007, 49: 1445-1454 [本文引用:5] [JCR: 3.75] [CJCR: 0.7555]
[6] Zhang H, Zhang S, Zhang J, Yang J, Wang Z. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agron J, 2008, 100: 726-734 [本文引用:6] [JCR: 1.518]
[7] Zhang H, Xue Y, Wang Z, Yang J, Zhang J. An Alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci, 2009, 49: 2246-2260 [本文引用:3] [JCR: 1.513]
[8] Belder P, Bouman B A M, Cabangon R, Guoan L, Quilang E J P, Li Y, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manag, 2004, 65: 193-210 [本文引用:3]
[9] Belder P, Spiertz J H J, Bouman B A M, Lu G, Tuong T P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Res, 2005, 93: 169-185 [本文引用:1] [JCR: 2.474]
[10] Tabbal D F, Bouman B A M, Bhuiyan S I, Sibayan E B, Sattar M A. On-farm strategies for reducing water input in irrigated rice: case studies in the Philippines. Agric Water Manag, 2002, 56: 93-112 [本文引用:2]
[11] Kato T, Takeda K. Associations among characters related to yield sink capacity in space-planted rice. Crop Sci, 1996, 36: 1135-1139 [本文引用:1] [JCR: 1.513]
[12] Kato T, Shinmura D, Taniguchi A. Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types. Plant Prod Sci, 2007, 10: 442-450 [本文引用:1] [JCR: 0.802]
[13] Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical since the release of IR8 and its challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552-1559 [本文引用:1] [JCR: 1.513]
[14] Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot, 2007, 100: 959-966 [本文引用:1] [JCR: 0.657]
[15] Peng S, Khush G S, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32-38 [本文引用:1] [JCR: 2.474]
[16] Yang J, Zhang J. Grain filling problem in “super” rice. J Exp Bot, 2010, 61: 1-5 [本文引用:1] [JCR: 5.242]
[17] Yang C, Yang L, Yang Y, Zhu O. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric Water Manag, 2004, 70: 67-81 [本文引用:2]
[18] Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Root-shoot interaction as a limiting factor of biomass producti-vity in new tropical rice lines. Soil Sci Plant Nutr, 2004, 50: 545-554 [本文引用:2] [JCR: 0.889]
[19] Mishra H S, Rathore T R, Pant R C. Effect of intermittent irrigation on groundwater table contribution, irrigation requirement and yield of rice in mollisols of Tarai region. Agric Water Manag, 1990, 18: 231-241 [本文引用:1]
[20] 赵世杰, 许长成, 邹琦, 孟庆伟. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30: 207-210
Zhao S J, Xu C C, Zou Q, Meng Q W. Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiol Commun, 1994, 30: 207-210 (in Chinese) [本文引用:1] [CJCR: 0.849]
[21] 张宪政. 作物生理研究法. 北京: 农业出版社, 1992. pp 140-142, 197-198
Zhang X Z. Research Methods on Crop Physiology. Beijing: Agriculture Press, 1992. pp 140-142, 197-198(in Chinese) [本文引用:2]
[22] Berry J A, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol, 1980, 31: 491-543 [本文引用:1]
[23] 郝建军, 刘延吉. 植物生理学试验技术. 沈阳: 辽宁科技出版社, 2001. pp178-190
Hao J J, Liu Y J. Experiment Technology of Plant Physiology. Shenyang: Liaoning Science and Technology Press, 2001. pp178-190(in Chinese) [本文引用:1]
[24] 赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科技出版社, 2002. pp48-138
Zhao S J, Shi G A, Dong X C. Laboratory Guide for Plant Physiology. Beijing: China Agricultural Science and Technology Press, 2002. pp48-138(in Chinese) [本文引用:1]
[25] 陈远平, 杨文钰. 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定. 四川农业大学学报, 2005, 23: 498-500
Chen Y P, Yang W Y. Determination of GA3, IAA, ABA and ZT in Dormant Buds of Allium ovalifolium by HPLC. J Sichuan Agric Univ, 2005, 23: 498-500 (in Chinese with English abstract) [本文引用:1]
[26] 赵全志, 乔江方, 刘辉, 田志强. 水稻根系与叶片光合特性的关系. 中国农业科学, 2007, 40: 1064-1068
Zhao Q Z, Qiao J F, Liu H, Tian Z Q. Relationship between root and leaf photosynthetic characteristic in rice. Sci Agric Sin, 2007, 40: 1064-1068 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.889]
[27] 任万军, 杨文钰, 伍菊仙, 樊高琼, 杨振华. 水稻栽后植株氮素积累特征及其与根系生长的关系. 植物营养与肥料学报, 2007, 13: 765-771
Ren W J, Yang W Y, Wu J X, Fan G Q, Yang Z H. Characteristics of nitrogen accumulation and its relationship with root growth of rice after transplanting. Plant Nutr Fert Sci, 2007, 13: 765-771 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.883]
[28] 刘桃菊, 戚昌瀚, 唐建军. 水稻根系建成与产量及其构成关系的研究. 中国农业科学, 2002, 35: 1416-1419
Liu T J, Qi C H, Tang J J. Studies on relationship between the character parameters of root and yield formation in rice. Sci Agric Sin, 2002, 35: 1416-1419 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.889]
[29] Terashima K. Eco-physiological study of root lodging tolerance in direct-seeded rice cultivars. Jpn J Crop Sci, 1997, 31: 155-162 [本文引用:1]
[30] 徐富贤, 郑家奎, 朱永川, 丁国祥, 王贵雄. 杂交中稻发根力与抽穗开花期抗旱性关系的研究. 作物学报, 2003, 29: 188-193
Xu F X, Zheng J K, Zhu Y C, Ding G X, Wang G X. Relationship between rooting ability and drought resistance at full-heading in mid-season hybrids rice. Acta Agron Sin, 2003, 29: 188-193 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[31] Stoop W A, Uphoff N, Kassam A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming system for resource-poor farmers. Agric Syst, 2002, 71: 249-274 [本文引用:1] [JCR: 2.504]
[32] Kende H, Zeevaart J A D. The five “classical” plant hormones. Plant Cell, 1997, 9: 1197-1210 [本文引用:1] [JCR: 9.251]
[33] Davies P J. Introduction. In: Davies P J, ed. Plant Hormones, Biosynthesis, Signal Transduction, Action!The Netherland s: Kluwer Academic Publishers, 2004. pp1-35 [本文引用:2]
[34] 杨建昌, 仇明, 王志琴, 刘立军, 朱庆森. 水稻发育胚乳中细胞增殖与细胞分裂素含量的关系. 作物学报, 2004, 30: 11-17
Yang J C, Qiu M, Wang Z Q, Liu L J, Zhu Q S. Relationship between the cell proliferation and cytokinin content in rice endosperm during its development. Acta Agron Sin, 2004, 30: 11-17 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]