玉米灌浆期果穗不同部位籽粒碳水化合物积累与淀粉合成相关酶活性变化
徐云姬, 顾道健, 秦昊, 张耗, 王志琴, 杨建昌*
扬州大学 / 江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
* 通讯作者(Corresponding author): 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317

第一作者联系方式: E-mail: xuyunji19881004@163.com

摘要

玉米果穗顶部籽粒通常较中、下部籽粒充实差, 粒重轻, 其机制不清楚。本研究旨在探明玉米果穗不同部位籽粒淀粉合成相关酶活性变化及其与籽粒灌浆的关系。以玉米品种登海11为材料, 分别进行春播和夏播试验, 观察果穗不同部位籽粒中可溶性糖、蔗糖和淀粉的含量及淀粉合成相关酶活性变化。结果显示, 与夏播玉米相比, 春播玉米具有较多的每穗粒数、较高的百粒重和产量。虽然产量在春播和夏播间有差异, 但两季玉米籽粒的最大灌浆速率、平均灌浆速率、百粒重、可溶性糖和蔗糖含量、最大淀粉积累速率、平均淀粉积累速率均表现为果穗下部籽粒>中部籽粒>上部籽粒。灌浆期果穗不同部位籽粒腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、淀粉合酶(StS)和淀粉分支酶(SBE)活性变化均呈单峰曲线, 果穗上部籽粒AGPase、StS和SBE活性峰值和平均值均显著低于果穗中、下部籽粒。相关分析表明, 淀粉积累速率、籽粒灌浆速率与AGPase、StS和SBE活性均呈极显著正相关。说明玉米果穗顶部籽粒较低的AGPase、StS 和SBE活性是其灌浆较差、粒重较低的重要原因。春播玉米粒重较高, 与其灌浆期较强的淀粉合成能力有关。

关键词: 玉米; 果穗不同部位籽粒; 籽粒灌浆; 碳水化合物; 淀粉合成相关酶
Changes in Carbohydrate Accumulation and Activities of Enzymes Involved in Starch Synthesis in Maize Kernels at Different Positions on an Ear during Grain Filling
XU Yun-Ji, GU Dao-Jian, QING Hao, ZHANG Hao, WANG Zhi-Qin, YANG Jian-Chang*
Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops / Yangzhou University, Yangzhou 225009, China
Abstract

Kernels at the upper position of a maize ear usually show slower filling rate and lower weight than those at the basal and middle positions. The mechanism is little understood. The objective of this study was to understand if changes in carbohydrate accumulation and activities of the enzymes involved in starch synthesis in the kernels at different positions on a maize ear were associated with grain filling. A maize cultivar Denghai 11 was planted in spring and summer. Contents of the soluble sugar, sucrose and starch and the activities of the adenosine diphosphoglucose pyrophosphorylase (AGPase), starch synthase (StS), and starch branching enzyme (SBE) in kernels at different positions on an ear and their relationships with grain filling rate were determined. The results showed that kernel number per ear, 100-kernel weight, and grain yield were more or higher for the spring maize than for the summer maize. Although the grain yield was different between the spring maize and the summer maize, the maximum kernel filling rate, mean kernel filling rate, 100-kernel weight, the contents of both soluble sugar and sucrose in kernels, the maximum starch accumulation rate and mean starch accumulation rate in kernels all exhibited an order of basal position > middle position> upper position. The activities of AGPase, StS, and SBE in kernels at different positions on an ear showed the changes of single peak curves, and the peak and mean enzymatic activities in kernels at the upper position were significantly lower than those at both middle and basal positions. The starch accumulation rate and kernel filling rate were very significantly and positively correlated with activities of AGPase, StS, and SBE in kernels. The results suggested that a smaller starch accumulation rate and lower weight for the kernels at the upper position on a maize ear are mainly attributed to lower activities of the enzymes involved in starch synthesis in these kernels. A higher kernel weight for the spring maize is closely associated with its stronger ability of starch synthesis in the kernels.

Keyword: Maize; Kernels at different positions on an ear; Grain filling; Carbohydrate; Enzymes in starch synthesis

玉米是我国种植面积最大的粮食作物, 其产量直接关系到我国粮食供应的安全(国家粮食局. http://nongye.cntv.cn/20121017/102023.shtml)。籽粒重量是玉米产量的重要组成部分, 籽粒充实的优劣直接关系到粒重的高低。玉米粒重因其在果穗上着生的位置不同而有较大差异。我们曾观察到, 籽粒最终粒重、最大灌浆速率和平均灌浆速率表现为下部籽粒> 中部籽粒> 上部籽粒[1]。说明相对于玉米果穗中下部籽粒, 果穗上部籽粒是弱势粒, 灌浆差, 粒重低。对于玉米、小麦和水稻等禾本科作物弱势粒灌浆差的原因, 国内外作了大量的研究, 主要集中在同化物供应[2, 3, 4]、激素水平[5, 6, 7, 8, 9]、输导系统[10]、酶活性[11, 12, 13]、蛋白质表达[14]和基因表达[15]等方面, 但强、弱势粒灌浆差异机制仍不清楚。

玉米籽粒充实的过程, 实际上就是淀粉合成和累积的过程[16]。光合同化物以蔗糖的形式从源(叶、茎和鞘)输送到籽粒, 再经一系列酶促反应形成淀粉[17, 18, 19]。在这一过程中, 由源供应的碳水化合物[20, 21, 22, 23, 24]和淀粉合成相关酶[25, 26, 27, 28, 29, 30, 31, 32, 33, 34]起着重要作用。但是关于玉米果穗不同部位籽粒中碳水化合物含量及淀粉合成相关酶活性的研究报道甚少。本研究通过玉米春播和夏播, 比较分析了不同季节生长条件下玉米果穗上不同部位籽粒碳水化合物含量及淀粉合成相关酶活性的差异, 为进一步揭示玉米强、弱势粒与粒重形成的生理机制提供依据。

1 材料与方法
1.1 试验材料与栽培概况

试验于2012年在扬州大学实验农场大田进行, 供试品种为玉米杂交种登海11。土壤类型为沙壤土, 土壤含有机质22.7 g kg-1、速效氮96.5 mg kg-1、速效磷20.4 mg kg-1、速效钾120.0 mg kg-1。分别于3月25日和7月25日播种, 分别称为春播玉米(简称春玉米)和夏播玉米(简称夏玉米)。在田间安装小型气象站记录两季玉米生长季中的主要气象因子。春玉米和夏玉米生长期的光照强度、平均温度、土壤温度和湿度等数据列于表1。两季玉米的株、行距均为37 cm × 55 cm, 三叶期间苗定苗至4.91万株 hm-2。播种前施用尿素、过磷酸钙和氯化钾, 分别折合纯氮42 kg hm-2、P2O5 76 kg hm-2和K2O 95 kg hm-2。在大喇叭口期和吐丝期分别追施尿素折合纯氮27 kg hm-2和63 kg hm-2。两季玉米大田试验小区面积均为235 m2, 重复2次。春玉米在7月19日收获, 夏玉米在11月6日收获。其他管理措施同当地玉米高产栽培。

表1 两季玉米试验中的主要气象因子 Table 1 Main meteorological factors for the spring and summer maize
1.2 取样与测定

1.2.1 籽粒灌浆动态测定 于吐丝期选择各试验同日吐丝且健壮一致的玉米200株并挂牌标记。自吐丝至吐丝后48 d, 每隔6 d取3个果穗, 根据果穗长度将果穗均等分为上、中、下三部分, 去除各分界处的边际籽粒后, 从各部分取200粒经105℃杀青30 min, 80℃烘箱烘至恒重后称重, 测定籽粒增重动态。参照朱庆森等[35]方法用Richards方程[36]拟合籽粒灌浆的增重动态:

W = A/(1 + Be-kt)1/N (1)

对方程(1)求导, 得到籽粒灌浆速率(G):

G= AkBe-kt/N(1 + Be-kt)(N+1)/N(2)

式中, W为籽粒重量, A为最大籽粒重, t为吐丝后的时间(d), BkN为方程参数。从籽粒重量A的5% (t1)到95% (t2)定义为活跃灌浆期(D), D= 2(N+2)/K。活跃灌浆期内籽粒增加的重量除以活跃灌浆期为籽粒平均灌浆速率(Gmean)。

1.2.2 籽粒中碳水化合物测定 用上述测定完籽粒增重动态的烘干籽粒以硫酸-蒽酮比色法[37, 38]测定可溶性糖、蔗糖和淀粉。用Rn=(Wn+6 - Wn-6)/12计算淀粉积累速率, 其中n为吐丝后天数, Rn为第n天的淀粉积累速率, Wn+6为第n+6天的淀粉含量, Wn-6为第n-6天的淀粉含量。下文中提及的籽粒中淀粉含量和淀粉积累速率为各部位籽粒淀粉含量和积累速率的平均值。

1.2.3 淀粉合成相关酶活性测定 自吐丝至吐丝后48 d, 每隔6 d取2个果穗的上、中、下部籽粒置液氮中冷冻5~10 min后放入-70℃超低温冰箱保存, 用于籽粒中腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、淀粉合酶(StS)和淀粉分支酶(SBE)活性测定。取5~10个籽粒称重, 加3~5 mL 100 mmol L-1 Tricine-NaOH提取液[pH 8.0, 含有10 mmol L-1 MgCl2, 2 mmol L-1 EDTA, 50 mmol L-1 2-mercaptoethanol, 12% (v/v) glycerol, 5% (w/v) PVP40]于研钵中研磨(温度保持在0℃), 15 000× g离心10 min (4℃), 上清液(粗酶液)用于各酶活性测定。参照Yang等[13, 39]方法测定AGPase、StS的活性。单位为U g-1 FW h-1。主要按照李太贵等[40]的方法测定SBE。取5~10个籽粒, 用柠檬酸缓冲液(pH 7.0) 5 mL冰浴研磨, 18 000× g离心20 min (4℃), 上清液为粗酶液。1 mL酶液与反应液(1 mL 0.2 mmol L-1柠檬酸缓冲液, 0.5 mL 0.1 mmol L-1 EDTA, 0.5 mL 0.75%可溶性淀粉)摇匀后37℃水浴中保温反应40 min后, 4 mL 10% TCA终止反应, 2000× g离心10 min后, 上清液加0.3 mL碘液显色, 测定OD660值。SBE活性(%)=(对照OD660 - 处理OD660)× 100/对照OD660

1.3 考种计产

成熟期取10个挂牌果穗分别考察穗行数、行粒数以及上、中、下部粒重, 计算每果穗平均粒重和各部位粒重。选取10个挂牌玉米植物测定株高、叶干物重、茎干物重、鞘干物重、穗位高、穗粗、穗长以及穗轴重。按各小区实收计产。

1.4 数据处理

采用Microsoft Excel 2003和SPSS16.0统计软件分析试验数据, 用SigmaPlot 10.0作图。

2 结果与分析
2.1 产量及其构成因素

表2可知, 春玉米产量显著高于夏玉米, 其主要原因是春玉米试验的每穗粒数和粒重显著高于夏玉米试验(表2)。夏玉米每穗粒数少、粒重轻可能与其雌穗分化期白天的高温以及灌浆后期夜间的低温有关系(表1)。

表2 玉米产量及其构成因素 Table 2 Grain yield and its components of maize
2.2 籽粒淀粉及其积累速率的变化

图1可知, 随着灌浆的进行, 淀粉含量逐渐累积, 且春玉米籽粒淀粉的累积量、最大积累速率及其平均积累速率明显高于夏玉米(图1)。

图1 玉米籽粒淀粉含量及其积累速率的变化Fig. 1 Changes in starch contents and its accumulation rate in kernels on a maize ear

穗粗和穗长在春玉米和夏玉米间无显著差异, 但茎、鞘、叶干重, 春玉米显著高于夏玉米(表3)。说明夏玉米生长量较小, 使其产量较低。春玉米的生长量较大、干物质积累较高、籽粒灌浆充实较好可能与其生长期较强的光照和较高的平均温度有关(表1)。

表3 玉米成熟期植株主要性状值 Table 3 Main characteristics of a maize plant at maturity
2.3 穗上不同部位的籽粒重

图2显示了果穗不同部位最终百粒重的情况。从图2可见, 无论是夏玉米还是春玉米, 果穗不同部位籽粒百粒重均为下部籽粒> 中部籽粒> 上部籽粒(图2)。春玉米的百粒重, 中部和下部籽粒分别较上部籽粒增加28.68%和36.13%, 下部籽粒比中部的高出5.79%。夏玉米的百粒重, 中部和下部籽粒分别较上部籽粒增加32.30%和41.74%, 下部籽粒比中部的高出7.13%。图2说明, 虽然春玉米和夏玉米产量差异较大, 但两季试验玉米果穗不同部位籽粒的粒重变化趋势基本一致。表明玉米籽粒重量在穗上分布具有一定规律性, 且受环境条件的影响较小。

图2 玉米果穗上不同部位的百粒重Upper: 果穗上部籽粒; Middle: 果穗中部籽粒; Basal: 果穗下部籽粒。同一试验穗上不同部位间比较, 柱上字母不同表示在P< 0.05水平上差异显著。Fig. 2 100-kernel weight of kernels at different positions on a maize earUpper: the kernels at the upper position on an ear; Middle: the kernels at the middle position on an ear; Basal: the kernels at the basal position on an ear. Bars superimposed by different letters are significantly different at P< 0.05 level within the same experiment.

2.4 穗上不同部位籽粒灌浆特性

图3表4可知, 在春玉米试验中, 籽粒最终粒重、最大灌浆速率、平均灌浆速率和活跃灌浆期, 果穗下部籽粒和中部籽粒显著大于上部籽粒, 而果穗下部与中部籽粒灌浆速率无显著差异。在夏玉米试验中, 籽粒增重和灌浆速率表现为下部籽粒> 中部籽粒> 上部籽粒。

图3 玉米果穗不同部位籽粒重量和灌浆速率的变化Upper: 果穗上部籽粒; Middle: 果穗中部籽粒; Basal: 果穗下部籽粒。Fig. 3 Changes in kernel weight and kernel filling rate at different positions on a maize earUpper: the kernels at the upper position on an ear; Middle: the kernels at the middle position on an ear; Basal: the kernels at the
basal position on an ear.

表4 玉米果穗不同粒位籽粒灌浆特征参数 Table 4 Parameters of grain-filling characteristics at different grain positions
2.5 果穗不同部位籽粒碳水化合物和淀粉积累速率的变化

籽粒中可溶性糖和蔗糖含量均呈现先增加再降低的趋势。无论春玉米试验还是夏玉米试验, 在吐丝后12 d以前, 含量基本表现为下部籽粒> 中部籽粒> 上部籽粒, 但是与上部籽粒相比较, 下部籽粒和中部籽粒的差异较小(图4)。

图4 玉米果穗不同部位籽粒碳水化合物含量的变化Upper: 果穗上部籽粒; Middle: 果穗中部籽粒; Basal: 果穗下部籽粒。Fig. 4 Changes in contents of carbohydrates in kernels at different positions on a maize earUpper: the kernels at the upper position on an ear; Middle: the kernels at the middle position on an ear; Basal: the kernels at the basal position on an ear.

在玉米灌浆活跃期, 籽粒中淀粉含量在果穗不同部位间含量均表现为下部> 中部> 上部, 这与粒重的结果一致。籽粒中淀粉积累速率呈单峰曲线, 峰值出现于吐丝后30 d左右, 与籽粒最大灌浆速率出现的时间基本一致, 且春玉米和夏玉米结果趋势相同(图5)。

图5 玉米果穗不同部位籽粒淀粉积累速率的变化Upper: 果穗上部籽粒; Middle: 果穗中部籽粒; Basal: 果穗下部籽粒。Fig. 5 Changes in starch accumulation rate in kernels at different positions on a maize earUpper: the kernels at the upper position on an ear; Middle: the kernels at the middle position on an ear; Basal: the kernels at the basal position on an ear.

相关分析结果表明, 粒重与灌浆前期籽粒中的可溶性糖、蔗糖含量及整个灌浆期的淀粉含量均呈正相关或极显著正相关(r = 0.551~0.983* * )(表5)。

表5 粒重与籽粒中碳水化合物含量的相关性 Table 5 Correlations of kernel weight with the carbohydrates in kernels
2.6 果穗不同部位籽粒淀粉合成相关酶活性变化

图6可知, 尽管腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、淀粉合酶(StS)和淀粉分支酶(SBE)活性到达峰值的时间有早有迟, 但均随着灌浆进程增加, 到达峰值后迅速下降, 这与淀粉积累速率及籽粒灌浆速率的变化一致。其中, 上部籽粒中到达峰值的时间明显迟于下部籽粒和中部籽粒。无论春玉米试验还是夏玉米试验, 这3种酶的峰值活性均表现为下部> 中部> 上部; 灌浆前中期, 其活性也表现为下部> 中部> 上部; 灌浆后期的结果则相反; 与夏玉米相比较, 春玉米穗上顶部籽粒中的StS活性较高, 这可能是春玉米粒重较夏玉米粒重高的一个重要生理原因。

图6 玉米果穗不同部位籽粒淀粉合成相关酶活性变化Upper: 果穗上部籽粒; Middle: 果穗中部籽粒; Basal: 果穗下部籽粒。Fig. 6 Changes in activities of the enzymes involved in starch synthesis in kernels at different positions on a maize earUpper: the kernels at the upper position on an ear; Middle: the kernels at the middle position on an ear; Basal: the kernels at the basal position on an ear.

对玉米活跃灌浆期籽粒中淀粉合成相关酶活性与淀粉积累速率、籽粒灌浆速率进行相关分析(图7)。表明, 籽粒中AGPase、StS和SBE活性与淀粉积累速率呈极显著正相关(r= 0.538* * ~0.730* * ), 与籽粒灌浆速率也呈极显著正相关(r= 0.649* * ~0.826* * )。表明提高AGPase、StS和SBE活性, 有利于籽粒淀粉积累, 进而增加粒重。

图7 玉米活跃灌浆期籽粒淀粉合成相关酶活性与淀粉积累速率及籽粒灌浆速率的相关性* * 表示在0.01水平上相关性显著。* * Significant at the 0.01 probability level.Fig. 7 Correlations of activities of the enzymes involved in starch synthesis with starch accumulation rate and grain filling rate

3 讨论

对于水稻、小麦和玉米穗上不同部位籽粒灌浆和粒重的差异, 国内外已有大量研究[1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]。但对于玉米灌浆期果穗不同部位籽粒碳水化合物积累与淀粉合成相关酶活性变化及其与籽粒灌浆的关系, 鲜有研究报道。本研究表明, 无论是玉米春播还是夏播, 果穗不同部位籽粒的灌浆速率、淀粉累积速率和最终粒重, 均表现为果穗下部籽粒> 中部籽粒> 上部籽粒。玉米果穗不同部位籽粒碳水化合物积累存在差异的原因目前尚不清楚。Yang等[41]在水稻上观察到, 灌浆始期弱势粒中蔗糖浓度明显高于强势粒。据此他们认为, 同化物基质浓度不是限制水稻弱势粒灌浆的重要因素。本试验则表明, 在灌浆初期玉米果穗顶部籽粒可溶性糖及蔗糖含量显著低于果穗中、下部籽粒。我们推测, 同化物供应不足可能是限制玉米穗顶部籽粒灌浆的一个重要因素。

有研究表明, 籽粒中AGPase、StS和SBE是作物库器官蔗糖-淀粉代谢途径的关键酶, 其活性与籽粒灌浆速率密切相关[26, 27, 42]。Ou-Lee等[43]曾报道, 玉米果穗顶部籽粒的AGPase活性显著低于果穗中部籽粒。本研究表明, 玉米灌浆期中AGPase、StS和SBE活性表现为果穗下部籽粒> 中部籽粒> 上部籽粒。淀粉积累速率、籽粒灌浆速率与AGPase、StS和SBE活性均呈极显著正相关。说明玉米果穗顶部籽粒灌浆期籽粒中AGPase、StS和SBE活性低是其淀粉积累速率慢、灌浆速率小和粒重轻的另一个重要生理原因。因此, 通过育种和栽培提高玉米果穗顶部籽粒蔗糖-淀粉合成代谢中的关键酶活性, 可能是促进玉米弱势粒灌浆和获取高产的一条重要途径。

对于水稻和小麦, 穗上强势粒和弱势粒的划分已有明确的标准[8, 44]。但对于玉米穗上强、弱势粒的划分还没有明确的方法。本研究观察到, 虽然同一玉米品种的产量在春播(春玉米)和夏播(夏玉米)间差异较大, 但两季玉米果穗不同部位籽粒的灌浆速率、淀粉累积速率和最终粒重, 均表现为果穗下部籽粒> 中部籽粒> 上部籽粒。说明虽然生长条件对一个玉米品种的产量有很大的影响, 但对玉米粒重在果穗上的分布特点影响很小。申丽霞等[45]也有类似的研究结果。张凤路等[21]曾观察到, 14C-同化物在籽粒中的分配表现为果穗中部籽粒> 基部籽粒> 上部籽粒。有人也指出, 玉米果穗中部籽粒在发芽时较果穗下部和上部籽粒的活性高[46]。本研究结果与张凤路等[21]和王元明[46]的结果存在差异, 可能与选用的品种和籽粒在穗上的位置划分方法不同有关。但所有试验均表明, 玉米果穗顶部籽粒的粒重要小于果穗中部和下部籽粒。据此, 笔者建议可将玉米果穗顶部籽粒(玉米顶部长度约占玉米果穗总长度的1/3)作为弱势粒, 将玉米果穗中、下部籽粒(玉米果穗中、下部长度占玉米果穗总长度的2/3)作为强势粒。由于玉米果穗最基部的3排籽粒重量相对较轻(数据未列出), 也可以将这些籽粒不包括在强势粒内。

在栽培上如何促进玉米顶部籽粒(弱势粒)灌浆, 提高其粒重?本研究未作深入探讨。Zhang等[47]和Yang等[12]曾在水稻和小麦上观察到, 在灌浆初期喷施低浓度脱落酸(ABA)可以显著提高水稻和小麦弱势粒蔗糖-淀粉合成代谢途径关键酶活性, 进而促进弱势粒灌浆, 提高其粒重。笔者[1]在先前的试验中观察到, 胚乳细胞活跃增殖期或活跃灌浆期, 籽粒玉米素(Z)+玉米素核苷(ZR)、吲哚-3-乙酸(IAA)、脱落酸(ABA)含量以果穗下部籽粒最高, 其次为中部籽粒; 胚乳细胞增殖速率和籽粒灌浆速率与籽粒Z+ZR、IAA和ABA含量呈极显著正相关。肖长新等[48]报道, 灌浆后期用6-BA灌根可以延缓叶片衰老, 显著增加吐丝期至成熟期植株吸氮量和干物质积累量。说明通过化学调控等措施调节玉米内源激素水平, 可以提高玉米弱势粒蔗糖-淀粉代谢途径关键酶活性, 促进弱势粒灌浆。有研究者指出, 适宜的施氮量可以促进营养物质向玉米果穗顶部籽粒供应, 加速籽粒的灌浆进程, 进而增加玉米最终粒重[49]。显然, 深入探讨促进玉米弱势粒灌浆的调控途径和关键栽培技术, 对于促进弱势粒灌浆和提高玉米产量具有重要意义。

本研究表明, 虽然生长条件对玉米穗上不同部位籽粒的粒重分布趋势影响很小, 但是生长条件对玉米产量形成有显著影响。同一玉米品种春播时的淀粉积累量和粒重显著高于夏播时。分析其原因, 春播玉米生长季中光照逐渐增强, 温度逐渐升高, 尤其是灌浆期充足的光照有助于干物质的生产与累积。夏播玉米灌浆后期光照不足, 温度低, 阻碍了光合作用的进行, 进而影响籽粒灌浆, 降低粒重。说明通过选用熟期适宜的品种, 或通过调节播期使得玉米灌浆期具有较强的光照和较高、较适宜的温度, 能够提高玉米产量, 特别是促进弱势籽粒灌浆、提高粒重。

应当指出, 本研究的主要目的是观察在不同生长条件下玉米灌浆期果穗不同部位籽粒碳水化合物积累和淀粉合成相关酶活性变化特点及其与籽粒灌浆的关系。因此, 仅选用了1个玉米品种。对于不同玉米品种穗上不同部位籽粒灌浆差异的特点, 需要进一步研究。

4 结论

春播玉米的每穗粒数、百粒重和产量显著高于夏播玉米。春播玉米灌浆期较强的光照和较高的温度是其粒重较高的重要生态原因。但无论是春播还是夏播, 玉米同一品种灌浆前期籽粒中可溶性糖、蔗糖及整个灌浆期淀粉含量、最大淀粉积累速率、平均淀粉积累速率、最终百粒重以及AGPase、StS和SBE活性表现为果穗下部籽粒> 中部籽粒> 上部籽粒。可将玉米果穗顶部籽粒划分为弱势粒, 将玉米果穗中、下部籽粒划分为强势粒。玉米弱势粒灌浆差、粒重低与其灌浆期较低的淀粉合成相关酶活性有密切关系。通过育种和栽培提高玉米果穗顶部籽粒蔗糖-淀粉合成代谢途径关键酶活性, 是促进玉米弱势粒灌浆、取得高产的一条重要途径。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。

参考文献
[1] 徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013, 39: 1452-1461
Xu Y J, Gu D J, Zhang B B, Zhang H, Wang Z Q, Yang J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agron Sin, 2013, 39: 1452-1461 (in Chinese with English abstract) [本文引用:3] [CJCR: 1.667]
[2] Sikder H P, Gupta D K D. Physiology of grain in rice. Indian Agric, 1976, 20: 133-141 [本文引用:1]
[3] Wang Y. Effectiveness of supplied nitrogen at the primordial panicle stage on rice characteristics and yields. Int Rice Res Newsl, 1981, 6: 23-24 [本文引用:1]
[4] Murty P S S, Murty K S. Spikelet sterility in relation to nitrogen and carbohydrate contents in rice. Indian J Plant Physiol, 1982, 25: 40-48 [本文引用:2]
[5] 杨卫兵, 王振林, 尹燕枰, 李文阳, 李勇, 陈晓光, 王平, 陈二影, 郭俊祥, 蔡铁, 倪英丽. 外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响. 中国农业科学, 2011, 44: 2673-2682
Yang W B, Wang Z L, Yin Y P, Li W Y, Li Y, Chen X G, Wang P, Chen E Y, Guo J X, Cai T, Ni Y L. Effects of spraying exogenous ABA or GA on the endogenous hormones concentration and filling of wheat grains. Sci Agric Sin, 2011, 44: 2673-2682 (in Chinese with English abstract) [本文引用:2] [CJCR: 1.889]
[6] 黄升谋, 邹应斌. 玉米素和吲哚乙酸与强弱势粒灌浆及胚乳细胞形成. 农业现代化研究, 2004, 25: 470-473
Huang S M, Zou Y B. Relationship of zeatin and indo-acetic acid with grains-filling and development of endosperm cells in superior and inferior grains. Res Agric Modern, 2004, 25: 470-473 (in Chinese with English abstract) [本文引用:2]
[7] Jin D M, Wang W J, Lan S Y. Dynamic status of endogenous IAA, ABA and GA levels in superior and inferior spikelets of heavy panicle hybrid rice during grain filling. J Plant Physiol Mol Biol, 2002, 28: 215-220 [本文引用:2] [CJCR: 1.344]
[8] Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul, 2000, 30: 261-270 [本文引用:3] [JCR: 1.67]
[9] 王艳芳, 崔震海, 阮燕晔, 马兴林, 关义新, 张立军. 不同类型春玉米灌浆期间籽粒中内源激素IAA、GA、ZR、ABA含量的变化. 植物生理学通讯, 2006, 42: 225-228
Wang Y F, Cui Z H, Ruan Y Y, Ma X L, Guan Y X, Zhang L J. Changes in endogenous hormone of IAA, GA, ZR and ABA in kernels during grain-filling stage in different types of spring maize (Zea mays L. ). Plant Physiol Commun, 2006, 42: 225-228 (in Chinese with English abstract) [本文引用:2] [CJCR: 0.849]
[10] 王纪华, 王树安, 赵冬梅, 夏厚军. 玉米穗轴维管解剖结构及含水率对籽粒发育的影响. 玉米科学, 1994, 2: 41-43
Wang J H, Wang S A, Zhao D M, Xia H J. Study on the effects of cob vascular structure and water ratio on kernel development. J Maize Sci, 1994, 2: 41-43 (in Chinese with English abstract) [本文引用:2] [CJCR: 0.965]
[11] 付景, 徐云姬, 陈露, 袁莉民, 王志琴, 杨建昌. 超级稻花后强、弱势粒淀粉合成相关酶活性和激素含量变化及其与籽粒灌浆的关系. 作物学报, 2012, 26: 302-310
Fu J, Xu Y J, Chen L, Yuan L M, Wang Z Q, Yang J C. Post-anthesis changes in activities of the enzymes related to starch synthesis and contents of hormones in superior and inferior spikelets and their relation with grain filling of super rice. Acta Agron Sin, 2012, 26: 302-310 (in Chinese with English abstract) [本文引用:2] [CJCR: 1.667]
[12] Yang J, Zhang J, Wang Z, Xu G, Zhu Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected: to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629 [本文引用:3] [JCR: 6.555]
[13] Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Activities of enzymes involved in source-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69-81 [本文引用:3] [JCR: 2.474]
[14] 陈婷婷, 谈桂露, 褚光, 刘立军, 杨建昌. 超级稻花后强、弱势粒灌浆相关蛋白质表达的差异. 作物学报, 2012, 38: 1471-1482
Chen T T, Tan G L, Chu G, Liu L J, Yang J C. Differential expressions of the proteins related to grain filling between superior and inferior spikelets of super rice after anthesis. Acta Agron Sin, 2012, 38: 1471-1482 (in Chinese with English abstract) [本文引用:2] [CJCR: 1.667]
[15] Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H, Terao T, Ishii R, Ohsugi R, Yamagishi T. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L. ): comparison of caryopses located at different positions in a panicle. Plant Cell Physiol, 2005, 46: 620-628 [本文引用:1] [JCR: 4.134]
[16] 黄艳胜. 玉米籽粒发育及产量形成. 中国林副特产, 2002, (1): 33
Wang Y S. Kernel development in maize and yield formation. For By-product Specialty China, 2002, (1): 33 (in Chinese) [本文引用:1]
[17] 王忠. 植物生理学. 北京: 中国农业出版社, 2000
Wang Z. Plant Physiology. Beijing: China Agriculture Press, 2000 (in Chinese) [本文引用:1] [JCR: 6.555]
[18] Nakamura Y, Yuki K, Park S Y. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 30: 833-839 [本文引用:1] [JCR: 4.134]
[19] Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during development of rice endosperm. Plant Sci, 1992, 82: 15-20 [本文引用:1] [JCR: 2.922]
[20] 贺明荣, 王振林, 张杰昌. 小麦开花后光合物质在不同穗位间的分配及其与穗粒重的关系. 作物学报, 2000, 26: 190-194
He M R, Wang Z L, Zhang J C. Distribution of photoassimilate to different parts of wheat ear after anthesis and its relation to kernel weight per ear. Acta Agron Sin, 2000, 26: 190-194 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[21] 张凤路, 江亚丽, 赵国顺, 张俊花. 14C-同化物在玉米果穗上的分布与籽粒败育关系. 作物学报, 2006, 32: 1104-1106
Zhang F L, Jiang Y L, Zhao G S, Zhang J H. Relationship between distribution of 14C-assimilates and kernel abortion in maize. Acta Agron Sin, 2006, 32: 1104-1106 (in Chinese with English abstract) [本文引用:3] [CJCR: 1.667]
[22] 张丽华, 李海军, 王艳哲, 李金才, 崔彦宏, 马瑞崑. 玉米花丝和穗轴中可溶性糖、淀粉变化规律的研究. 玉米科学, 2005, 13: 64-67
Zhang L H, Li H J, Wang Y Z, Li J C, Cui Y H, Ma R K. Study on the dynamic of soluble sugar and starch in the silk and cob of corn. J Maize Sci, 2005, 13: 64-67(in Chinese with English abstract) [本文引用:1] [CJCR: 0.965]
[23] 刘海龙, 何萍, 金继运, 李文娟, 张宽, 王秀芳, 谢佳贵, 尹彩侠, 侯云鹏. 施氮对高淀粉玉米和普通玉米子粒可溶性糖和淀粉积累的影响. 植物营养与肥料学报, 2009, 15: 493-500
Liu H L, He P, Jin J Y, Li W J, Zhang K, Wang X F, Xie J G, Yin C X, Hou Y P. Effects of nitrogen nutrition on sugar and starch accumulation of high starch maize and common maize. Plant Nutr Fert Sci, 2009, 15: 493-500 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.883]
[24] 王艳芳, 杨东伟, 张立军, 马兴林, 关义新. 高油玉米灌浆期籽粒可溶性糖含量与脂肪积累的关系. 沈阳农业大学学报, 2006, 37: 144-146
Wang Y F, Yang D W, Zhang L J, Ma X L, Guan Y X. Relationship between fat accumulation and soluble sugar contents in kernels during grain-filling stage in maize. J Shenyang Agric Univ, 2006, 37: 144-146 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.55]
[25] 张海燕, 董树亭, 高荣岐, 李玉全. 玉米籽粒淀粉积累及相关酶活性分析. 中国农业科学, 2008, 41: 2174-2181
Zhang H Y, Dong S T, Gao R Q, Li Y Q. Starch accumulation and enzymes activities associated with starch synthesis in maize kernels. Sci Agric Sin, 2008, 41: 2174-2181 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.889]
[26] Zhang J J, Hu Y F, Zhou H, Huang Y B. Starch accumulation and activities of key enzymes involved in starch synthesis in the grains of maize inbred lines with different starch contents. J Plant Physiol Mol Biol, 2007, 33: 123-130 [本文引用:2] [CJCR: 1.344]
[27] 赵步洪, 张文杰, 常二华, 王志琴, 杨建昌. 水稻灌浆期籽粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系. 中国农业科学, 2004, 37: 1123-1129
Zhao B H, Zhang W J, Chang E H, Wang Z Q, Yang J C. Changes in activities of the key enzymes related to starch synthesis in rice grains during grain filling and their relationships with the filling rate and cooking quality. Sci Agric Sin, 2004, 37: 1123-1129 (in Chinese with English abstract) [本文引用:2] [CJCR: 1.889]
[28] 王志琴, 叶玉秀, 杨建昌, 袁莉民, 王学明, 朱庆森. 水稻灌浆期籽粒中蔗糖合成酶活性的变化与调节. 作物学报, 2004, 30: 634-643
Wang Z Q, Ye Y X, Yang J C, Yuan L M, Wang X M, Zhu Q S. Changes and regulations of sucrose synthase activity in rice grains during grain filling. Acta Agron Sin, 2004, 30: 634-643 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[29] Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul, 2001, 35: 81-91 [本文引用:1] [JCR: 1.67]
[30] Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci, 1995, 35: 827-831 [本文引用:1] [JCR: 1.513]
[31] 梁建生, 曹显祖, 徐生, 朱庆森, 宋平. 水稻籽粒库强与其淀粉积累之间关系的研究. 作物学报, 1994, 20: 685-691
Liang J S, Cao X Z, Xu S, Zhu Q S, Song P. Studies on the relationship between the grain sink strength and its starch accumulation in rice (O. sativa). Acta Agron Sin, 1994, 20: 685-691 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[32] Doehlert D C. Distribution of enzyme activities within the developing maize (Zea mays) kernel in relation to starch, oil and protein accumulation. Physiol Plant, 1990, 78: 560-567 [本文引用:1] [JCR: 6.555]
[33] Singletary G W, Banisadr R, Keeling P L. Influence of gene dosage on carbohydrate synthesis and enzymatic activities in endosperm of starch-deficient mutants of maize. Plant Physiol, 1997, 113: 293-304 [本文引用:1] [JCR: 6.555]
[34] Cao H, Imparl-Radosevich J, Guan H, Keeling P L, James M G, Myers A M. Identification of the soluble starch synthase activities of maize endosperm. Plant Physiol, 1999, 120: 205-215 [本文引用:1] [JCR: 6.555]
[35] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182-193
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988, 14: 182-193 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[36] Richards F J. A flexible growth function for empirical use. J Exp Bot, 1959, 10: 290-300 [本文引用:1] [JCR: 5.242]
[37] 张宪政, 陈凤玉, 王荣富. 植物生理学实验技术. 沈阳: 辽宁科学技术出版社, 1994. pp 144-151
Zhang X Z, Chen F Y, Wang R F. Experiment Technology of Plant Physiology. Shenyang: Liaoning Science and Technology Press, 1994. pp 144-151(in Chinese) [本文引用:1]
[38] 何照范. 粮油籽粒品质及其分析技术. 北京: 中国农业出版社, 1985. pp 144-150
He Z F. Grain Quality of Cereals for Gaining Oil and Its Analysis Technique. Beijing: China Agriculture Press, 1985. pp 144-150(in Chinese) [本文引用:1]
[39] 程方民, 蒋德安, 吴平, 石春海. 早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征. 作物学报, 2001, 27: 201-206
Cheng F M, Jiang D A, Wu P, Shi C H. The dynamic change of starch synthesis enzymes during the grain filling stage and effects of temperature upon it. Acta Agron Sin, 2001, 27: 201-206 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[40] 李太贵, 沈波, 陈能, 罗玉坤. Q酶在水稻籽粒垩白形成中作用的研究. 作物学报, 1997, 23: 338-344
Li T G, Shen B, Chen N, Luo Y K. Effect of Q-enzyme on the chalkiness formation of rice grain. Acta Agron Sin, 1997, 23: 338-344 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[41] Yang J C, Zhang J H, Wang Z Q, Liu K, Wang P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot, 2006, 57: 149-160 [本文引用:1] [JCR: 5.242]
[42] 王芳, 王宪泽. 小麦籽粒淀粉合成动态及其相关酶活性的研究. 麦类作物学报, 2004, 24: 57-60
Wang F, Wang X Z. Study on the dynamic changes of starch synthesis and their related enzymes in wheat. J Triticeae Crops, 2004, 24: 57-60 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.007]
[43] Ou-Lee T M, Setter T L. Effect of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugars and starch. Plant Physiol, 1985, 79: 852-855 [本文引用:1] [JCR: 6.555]
[44] Jiang D, Cao W, Dai T, Jing Q. Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L. ) spike. Plant Growth Regul, 2003, 41: 247-257 [本文引用:1] [JCR: 1.67]
[45] 申丽霞, 王璞, 张红芳, 易镇邪. 施氮对夏玉米不同部位籽粒灌浆的影响. 作物学报, 2005, 31: 532-534
Shen L X, Wang P, Zhang H F, Yi Z X. Effect of nitrogen supply on grain filling at different ear position in summer maize. Acta Agron Sin, 2005, 31: 532-534 (in Chinese with English abstract) [本文引用:1] [CJCR: 1.667]
[46] 王元明. 玉米穗中部籽粒作种研究的初步报告. 中国农业科学, 1952, 4: 29
Wang Y M. Preliminary report on the research for middle kernels as seeds in maize corn. Sci Agric Sin, 1952, 4: 29 (in Chinese) [本文引用:2] [CJCR: 1.889]
[47] Zhang H, Li H W, Yuan L M, Wang Z Q, Yang J C, Zhang J H. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. J Exp Bot, 2012, 63: 215-227 [本文引用:1] [JCR: 5.242]
[48] 肖长新, 陈延玲, 米国华. 灌浆后期6-BA灌根对玉米衰老和产量形成的影响. 玉米科学, 2014, 22(1): 103-107
Xiao C X, Chen Y L, Mi G H. Effect of treating root with 6-BA at late grain filling stage on leaf senescence and yield of maize. J Maize Sci, 2014, 22(1): 103-107 (in Chinese with English abstract) [本文引用:1] [CJCR: 0.965]
[49] 杨升辉, 杨恒山, 李洪杰, 唐汝友, 王素阁, 徐长帅, 陈勇. 不同氮肥运筹下春玉米子粒灌浆特性的分析. 玉米科学, 2014, 22(1): 91-95
Yang S H, Yang H S, Li H J, Tang R Y, Wang S G, Xu C S, Chen Y. Analysis on kernel filling characteristics for spring maize in different nitrogen fertilizer strategies. J Maize Sci, 2014, 22(1): 91-95 (in Chinese with English abstract) [本文引用:]