作物学报 ›› 2020, Vol. 46 ›› Issue (10): 1485-1495.doi: 10.3724/SP.J.1006.2020.01013
翟胜男1(), 郭军1, 刘成1, 李豪圣1, 宋健民1, 刘爱峰1, 曹新有1, 程敦公1, 李法计1, 何中虎2, 夏先春2,*(), 刘建军1,*()
ZHAI Sheng-Nan1(), GUO Jun1, LIU Cheng1, LI Hao-Sheng1, SONG Jian-Min1, LIU Ai-Feng1, CAO Xin-You1, CHENG Dun-Gong1, LI Fa-Ji1, HE Zhong-Hu2, XIA Xian-Chun2,*(), LIU Jian-Jun1,*()
摘要:
小麦籽粒黄色素是面粉及面制品黄度形成的主要原因, 其主要成分是类胡萝卜素。ε-番茄红素环化酶(LCYE)是小麦类胡萝卜素生物合成途径的关键酶, 前人对其研究多集中于QTL定位、基因克隆和分子标记开发, 而基因功能和遗传调控机制尚不明确。本研究利用TILLING技术筛选EMS诱变群体, 对Lcye功能及遗传调控机制进行研究, 以期深入认识小麦籽粒黄色素含量形成的分子机制。在2491份M2代EMS诱变群体中共检测到21个Lcye基因的点突变, 包含6个错义突变, 2个同义突变和13个内含子突变, Lcye基因在该诱变群体中的突变频率为1/266.1 kb。PARSENP软件预测分析显示, M090815 (C2202T)和M091648 (G3284A)两个错义突变可能严重影响蛋白质功能。MEME分析结果表明, M090815和M092230 (G2195A)突变位点位于Lcye基因保守结构域内。6个错义突变植株与野生型杂交构建的F2代群体中, M090815突变位点显著降低籽粒黄色素含量, 证实该位点对LCYE功能具有重要影响。qRT-PCR (quantitative real-time PCR)分析也显示, M090815突变位点显著降低Lcye基因表达水平, 且Lcye-B1和Lcye-D1基因表达降低趋势相似, 而Lcye-A1在花后14~28 d表现出补偿效应。本研究不仅验证Lcye基因功能, 也为面粉及其制品颜色性状改良提供了理论依据和种质资源。
[1] |
Mares D J, Campbell A W. Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res, 2001,52:1297-1309.
doi: 10.1071/AR01048 |
[2] |
Adom K K, Sorrells M E, Liu R H. Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem, 2003,51:7825-7834.
doi: 10.1021/jf030404l pmid: 14664553 |
[3] |
Fratianni A, Irano M, Panfili G, Acquistucci R. Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimeter measurements. J Agric Food Chem, 2005,53:2373-2378.
doi: 10.1021/jf040351n pmid: 15796565 |
[4] |
Cong L, Wang C, Li Z Q, Chen L, Yang G X, Wang Y S, He G Y. cDNA cloning and expression analysis of wheat (Triticum aestivum L.) phytoene and ζ-carotene desaturase genes. Mol Biol Rep, 2010,37:3351-3361.
doi: 10.1007/s11033-009-9922-7 |
[5] |
李文爽, 夏先春, 何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法. 作物学报, 2016,42:706-713.
doi: 10.3724/SP.J.1006.2016.00706 |
Li W S, Xia X C, He Z H. Establishment of Ultra performance liquid chromatography (UPLC) protocol for analyzing carotenoids in common wheat. Acta Agron Sin, 2016,42:706-713 (in Chinese with English abstract). | |
[6] |
Cazzonelli C I, Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci, 2010,15:266-274.
doi: 10.1016/j.tplants.2010.02.003 pmid: 20303820 |
[7] |
Zhu C F, Bai C, Sanahuja G, Yuan D W, Farré G, Naqvi S, Shi L X, Capell T, Christou P. The regulation of carotenoid pigmentation in flowers. Arch Biochem Biophys, 2010,504:132-141.
doi: 10.1016/j.abb.2010.07.028 pmid: 20688043 |
[8] |
Howitt C A, Cavanagh C R, Bowerman A F, Cazzonelli C, Rampling L, Mimica J L, Pogson B J. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomic, 2009,9:363-376.
doi: 10.1007/s10142-009-0121-3 |
[9] | 董长海. 普通小麦籽粒黄色素含量相关基因的克隆与功能标记开发. 河北农业大学硕士学位论文, 河北保定, 2011. pp 32-33. |
Dong C H. Cloning of Genes Associated with Grain Yellow Pigment Content in Common Wheat and Development of Functional Markers. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2011. pp 32-33 (in Chinese with English abstract). | |
[10] |
Crawford A C, Francki M G. Lycopene-e-cyclase (e-LCY3A) is functionally associated with quantitative trait loci for flour b* colour on chromosome 3A in wheat (Triticum aestivum L.). Mol Breed, 2013,31:737-741.
doi: 10.1007/s11032-012-9812-x |
[11] | Till B J, Clbert T, Tompa R, Enns L C, Codomo C A, Johnson J E, Reynolds S H, Henikoff J G, Greene E A, Steine M N, Comai L, Henkoff S. High-throughput TILLING for functional genomics. In: Grotewold E ed. Plant Functional Genomics. Totowa N J, USA: Humana Press, 2003. pp 205-220. |
[12] |
闫智慧, 郭会君, 徐荣旗, 刘录祥. TILLING技术的发展及其在不同植物中的应用. 核农学报, 2014,28:224-233.
doi: 10.11869/j.issn.100-8551.2014.02.0224 |
Yan Z H, Guo H J, Xu R Q, Liu L X. Development of TILLING technology and its application in plants. J Nucl Agric Sci, 2014,28:224-233 (in Chinese with English abstract). | |
[13] | 侯彩玲, 陈龙, 刘晓萌, 赵锦慧, 卢龙斗. TILLING技术在作物品质改良中的应用. 种子, 2008,27(11):77-80. |
Hou C L, Chen L, Liu X M, Zhao J H, Lu L D. Application of TILLING technology on the improvement of crop quality. Seed, 2008,27(11):77-80 (in Chinese). | |
[14] |
韩宁, 唐丹, 刘文, 闫丽, 胡晓君. Tilling技术及其在小麦中的应用研究进展. 麦类作物学报, 2013,33:1054-1057.
doi: 10.7606/j.issn.1009-1041.2013.05.036 |
Han N, Tang D, Liu W, Yan L, Hu X J. Development of targeting induced local lesions in genomes and its application in wheat (Triticum aestivum L.). J Triticeae Crops, 2013,33:1054-1057 (in Chinese with English abstract). | |
[15] |
陈锋, 徐艳花, 董中东, 许海霞, 程西永, 詹克慧, 崔党群. TILLING 技术的形成和发展及其在麦类作物中的应用. 麦类作物学报, 2010,30:178-182.
doi: 10.7606/j.issn.1009-1041.2010.01.035 |
Chen F, Xu Y H, Dong Z D, Xu H X, Cheng X Y, Zhan K H, Cui D Q. Development of targeting induced local lesion in genomes and its application in Triticeae crops. J Triticeae Crops, 2010,30:178-182 (in Chinese with English abstract). | |
[16] | 潘娜, 郭会君, 赵世荣, 王广金, 刘录祥. TILLING技术在作物突变研究中的应用现状与前景. 植物遗传资源学报, 2011,12:581-587. |
Pan N, Guo H J, Zhao S R, Wang G J, Liu L X. Current status and perspectives of TILLING technique for crop mutagenesis research. J Plant Genet Resour, 2011,12:581-587 (in Chinese with English abstract). | |
[17] |
Zhai S N, Li G Y, Sun Y W, Song J M, Li J H, Song G Q, Li Y L, Ling H Q, He Z H, Xia X C. Genetic analysis of phytoene synthase 1 (Psy1) gene function and regulation in common wheat. BMC Plant Biol, 2016,16:228.
doi: 10.1186/s12870-016-0916-z pmid: 27769185 |
[18] |
Slade A J, Fuerstenberg S I, Loeffler D, Steine M N, Facciontti D. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol, 2005,23:75-81.
doi: 10.1038/nbt1043 pmid: 15580263 |
[19] |
Till B J, Zerr T, Comai L, Henikoff S. A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc, 2006,1:2465-2477.
doi: 10.1038/nprot.2006.329 pmid: 17406493 |
[20] | Doyle J J, Doyle J L. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull, 1987,19:11-15. |
[21] |
Ng P C, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res, 2003,31:3812-3814.
doi: 10.1093/nar/gkg509 pmid: 12824425 |
[22] |
Taylor N E, Greene E A. PARSESNP: a tool for the analysis of nucleotide polymorphisms. Nucleic Acids Res, 2003,31:3808-3811.
doi: 10.1093/nar/gkg574 pmid: 12824424 |
[23] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[24] |
Hornero Mendez D, de Guevara R G L, Minguez Mosquera M I. Carotenoid biosynthesis changes in five red pepper (Capsicum annuum L.) cultivars during ripening. Cultivar selection for breeding. J Agric Food Chem, 2000,48:3857-3864.
doi: 10.1021/jf991020r pmid: 10995282 |
[25] |
Ronen G, Carmel Goren L, Zamir D, Hirschberg J. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA, 2000,97:11102-11107.
doi: 10.1073/pnas.190177497 pmid: 10995464 |
[26] |
Richaud D, Stange C, Gadaleta A, Colasuonno P, Parada R, Schwember A R. Identification of Lycopene epsilon cyclase (Lcye) gene mutants to potentially increase β-carotene content in durum wheat (Triticum turgidum L. ssp. durum) through TILLING. PLoS One, 2018,13:e0208948.
doi: 10.1371/journal.pone.0208948 pmid: 30532162 |
[27] |
Gilchrist E J, Haughn G W. TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol, 2005,8:211-215.
doi: 10.1016/j.pbi.2005.01.004 pmid: 15753003 |
[28] | Till B J, Datta S, Jankowicz Cieslak J. TILLING: the Next Generation. In: Varshney R, Pandey M, Chitikineni A, eds. Plant Genetics and Molecular Biology. Advances in Biochemical Engineering/Biotechnology, Vol. 164. Springer, Cham, 2018. pp 139-160. https://doi.org/10.1007/10_2017_54. |
[29] |
Till B J, Cooper J, Tai T H, Colowit P, Greene E A, Henikoff S, Comai L. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol, 2007,7:19.
doi: 10.1186/1471-2229-7-19 pmid: 17428339 |
[30] |
Till B J, Reynolds S H, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo C A, Enns L C, Odden A R, Greene E A, Comai L, Henikoff S. Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol, 2004,4:12.
doi: 10.1186/1471-2229-4-12 pmid: 15282033 |
[31] |
Acevedo Garcia J, Spencer D, Thieron H, Reinstädler A, Hammond Kosack K, Phillips A L, Panstruga R. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol J, 2017,15:367-378.
doi: 10.1111/pbi.12631 pmid: 27565953 |
[32] |
Kim H, Yoon M R, Chun A, Tai T H. Identification of novel mutations in the rice starch branching enzyme I gene via TILLING by sequencing. Euphytica, 2018,214:12.
doi: 10.1007/s10681-017-2093-z |
[33] |
Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N. TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes, 2009,2:258.
doi: 10.1186/1756-0500-2-258 pmid: 20017921 |
[34] |
Nida H, Blum S, Zielinski D, Srivastava D A, Elbaum R, Xin Z, Erlich Y, Fridman E, Shental N. Highly efficient de novo mutant identification in a Sorghum bicolor TILLING population using the ComSeq approach. Plant J, 2016,86:349-359.
doi: 10.1111/tpj.13161 pmid: 26959378 |
[35] |
Colbert T, Till B J, Tompa R, Reynolds S, Steine M N, Yeung A T, McCallum C M, Comai L, Henikoff S. High-throughout screening for induced point mutations. Plant Physiol, 2001,126:480.
doi: 10.1104/pp.126.2.480 pmid: 11402178 |
[36] |
Dong C, Dalton Morgan J, Vincent K, Sharp P. A modified TILLING method for wheat breeding. Plant Genome, 2009,2:39-47.
doi: 10.3835/plantgenome2008.10.0012 |
[37] |
Uauy C, Paraiso F, Colasuonno P, Tran R K, Tsai H, Berardi S, Comai L, Dubcovsky J. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol, 2009,9:115-128.
doi: 10.1186/1471-2229-9-115 pmid: 19712486 |
[38] |
Colasuonno P, Incerti O, Lozito M L, Simeone R, Gadaleta A, Blanco A. DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population. BMC Genet, 2016,17:43.
doi: 10.1186/s12863-016-0350-0 pmid: 26884094 |
[39] |
Slade A J, McGuire C, Loeffler D, Mullenberg J, Skinner W, Fazio G, Holm A, Brandt K M, Steine M N, Goodstal J F, Knauf V C. Development of high amylose wheat through TILLING. BMC Plant Biol, 2012,12:69-85.
doi: 10.1186/1471-2229-12-69 pmid: 22584013 |
[40] |
何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011,37:202-215.
doi: 10.3724/SP.J.1006.2011.00202 |
He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011,37:202-215 (in Chinese with English abstract). | |
[41] |
Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014,33:1-14.
doi: 10.1007/s11032-013-9917-x |
[42] |
Shannon G J, Nguyen H T. Development of SNP genotyping assays for seed composition traits in soybean. Int J Plant Genomics, 2017,2017:6572969.
doi: 10.1155/2017/6572969 pmid: 28630621 |
[1] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[2] | 邹华文,王道杰,边秀秀,商海红,杨新泉. 近15年国家自然科学基金稻、麦类作物遗传育种领域项目申请情况分析[J]. 作物学报, 2015, 41(05): 820-828. |
[3] | 朱明, 魏伟, 陈明, 张宪省, 徐兆师, 李连城, 马有志. 一种新的快速鉴定蛋白与靶DNA结合位点的方法[J]. 作物学报, 2011, 37(12): 2167-2172. |
[4] | 吴慧敏, 黄立钰, 潘雅娇, 靳鹏, 傅彬英. 水稻基因OsASIE1抗逆功能分析[J]. 作物学报, 2011, 37(10): 1771-1778. |
[5] | 韩锁义;张恒友;杨玛丽;赵团结;盖钧镒;喻德跃. 大豆“南农86-4”突变体筛选及突变体库的构建[J]. 作物学报, 2007, 33(12): 2059-2062. |
[6] | 叶俊;吴建国;杜婧;郑希;石春海. 水稻“9311”突变体的筛选和突变体库的构建[J]. 作物学报, 2006, 32(10): 1525-1529. |
[7] | 张立平;阎俊;夏先春;何中虎;Mark W Sutherland. 普通小麦籽粒黄色素含量的QTL分析[J]. 作物学报, 2006, 32(01): 41-45. |
[8] | 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235-239. |
[9] | 刘文轩;陈佩度;刘大钧. 一个普通小麦-大赖草易位系T01的选育与鉴定[J]. 作物学报, 2000, 26(03): 305-309. |
[10] | 赵永亮;宋同明;马惠平. 利用花粉化学诱变快速创造特用玉米新种质[J]. 作物学报, 1999, 25(02): 157-161. |
[11] | 陆卫;贾敬芬. 谷子胚性愈伤组织耐盐系的选择及其生理生化特性分析[J]. 作物学报, 1994, 20(02): 241-247. |
|