作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1158-1165.doi: 10.3724/SP.J.1006.2019.81017
SU Qiang,RONG Wei,ZHANG Zeng-Yan()
摘要:
小麦纹枯病已成为我国小麦生产的重要限制因素。研究小麦防御反应分子基础, 发掘有效的抗病基因是小麦抗纹枯病育种突破的前提。本研究从抗纹枯病小麦品系CI12633中克隆出一个类受体蛋白激酶(receptor-like protein kinase, RLK)基因TaPK3A, 并对其表达特性及抗纹枯病功能进行了分析和验证。TaPK3A基因的开放阅读框长度为1983 bp, 编码660个氨基酸组成的类受体蛋白激酶。TaPK3A在抗纹枯病小麦品系CI12633中的表达受禾谷丝核菌的诱导而显著上调; TaPK3A在根、茎、叶、穗中都有表达, 以叶中的表达量最高; TaPK3A的表达受植物激素水杨酸诱导最为显著。利用大麦条形花叶病毒(barley stripe mosaic virus, BSMV)诱导的基因沉默(virus-induced gene silencing, VIGS)技术, 降低抗纹枯病小麦CI12633中TaPK3A的转录水平, 再接种禾谷丝核菌WK207进行纹枯病抗性鉴定。结果显示, 与对照植株相比, TaPK3A转录量下降的CI12633植株对纹枯病的抗性显著降低, 说明TaPK3A是小麦防御纹枯病反应所需的。
[1] | 王敏霞, 祝秀亮, 罗美英, 张增艳 . 小麦防御素基因TaPDF35的克隆与功能分析. 植物遗传资源学报, 2017,18:925-932. |
Wang M X, Zhu X L, Luo M Y, Zhang Z Y . Cloning and defensive functional analysis of a wheat defensin gene TaPDF35. J Plant Genet Resour, 2017,18:925-932 (in Chinese with English abstract). | |
[2] | 史建荣, 王裕中, 陈怀谷, 沈素文 . 小麦纹枯病品种抗性鉴定技术及抗病资源的筛选与分析. 植物保护学报, 2000,27:107-112. |
Shi J R, Wang Y Z, Chen H G, Shen S W . Screening techniques and evaluation of wheat resistance to sharp eyespot caused by Rhizoctonia cerealis. Acta Phytophyl Sin, 2000,27:107-112 (in Chinese with English abstract). | |
[3] | 梁邦平, 郝冬冬, 刁慧珊, 李家创, 袁凤平, 李毛, 武军, 赵继新, 陈新宏 . 小麦-黑麦1BL/1RS易位系7-1抗纹枯病的分子细胞学鉴定. 农业生物技术学报, 2018,26:711-718. |
Liang B P, Hao D D, Diao H S, Li J C, Yuan F P, Li M, Wu J, Zhao J X, Chen X H . Molecular cytogenetic identification of wheat-rye (Triticum aestivum-Secale cereale) 1BL/1R translocation line 7-1 with sharp eyespot resistance. J Agric Biotechnol, 2018,26:711-718 (in Chinese with English abstract). | |
[4] |
Jones J D, Dangl J L . The plant immune system. Nature, 2006,444:323-329.
doi: 10.1038/nature05286 |
[5] |
Morris E R, Walker J C . Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol, 2003,6:339-342.
doi: 10.1016/S1369-5266(03)00055-4 |
[6] | Shiu S H, Bleecker A B . Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 2001,98:10763-10768. |
[7] |
Walker J C . Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol, 1994,26:1599-1609.
doi: 10.1007/BF00016492 |
[8] |
Tor M, Lotze M T, Holton N . Receptor-mediated signalling in plants: molecular patterns and programmes. J Exp Bot, 2009,60:3645-3654.
doi: 10.1093/jxb/erp233 |
[9] | Ma C L, Guo J, Kang Y, Doman K, Bryan A C, Tax F E, Yamaguchi Y, Qi Z . AtPEPTIDE RECEPTOR2 mediates the AtPEPTIDE1-induced cytosolic Ca2+ rise, which is required for the suppression of Glutamine Dumper gene expression in Arabidopsis roots. J Integr Plant Biol, 2014,56:684-694. |
[10] | Shiu S H, Karlowski W M, Pan R S, Tzeng Y H, Mayer K F X, Li W H . Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell, 2004,16:1220-1234. |
[11] |
Verica J A, He Z H . The cell wall-associated kinase (WAK) and WAK-like kinase gene family. Plant Physiol, 2002,129:455-459.
doi: 10.1104/pp.011028 |
[12] | Chang C, Kwok S F, Bleecker A B, Meyerowitz E M . Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 1993,262:539-544. |
[13] |
Becraft P W, Stinard P S, McCarty D R . CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation. Science, 1996,273:1406-1409.
doi: 10.1126/science.273.5280.1406 |
[14] | Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K . The Sreceptor kinase determines self-incompatibility in Brassica stigma. Nature, 2000,403:913-916. |
[15] | Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss G B . A receptor kinase gene regulating symbiotic nodule development. Nature, 2002,417:962-926. |
[16] | Nishimura R, Hayashi M, Wu G J, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M . HAR1 mediates systemic regulation of symbiotic organ development. Nature, 2002,420:426-429. |
[17] | Loh Y T, Martin G B . The Pto bacterial resistance gene and the Fen insecticide sensitivity gene encode functional protein kinases with serine/threonine specificity. Plant Physiol, 1995,108:1735-1739. |
[18] | Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P . A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995,270:1804-1806. |
[19] | Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q . Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004,37:517-527. |
[20] |
Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G . A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci USA, 2010,107:9452-9457.
doi: 10.1073/pnas.1000675107 |
[21] |
Kohorn B D, Johansen S, Shishido A, Todorova T, Martinez R, Defeo E, Obregon P . Pectin activation of MAP kinase and gene expression is WAK2 dependent. Plant J, 2009,60:974-982.
doi: 10.1111/tpj.2009.60.issue-6 |
[22] | Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, Xing Y, Zhang B, Liu H, Fengler K A, Zhao J, Zhao X, Chen Y, Lai J, Yan J, Xu M . A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet, 2015,47:151-157. |
[23] | Singh P, Kuo Y C, Mishra S, Tsai C H, Chien C C, Chen C W, Desclos-Theveniau M, Chu P W, Schulze B, Chinchilla D, Boller T, Zimmerli L . The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell, 2012,24:1256-1270. |
[24] |
Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L . A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006,46:794-804.
doi: 10.1111/tpj.2006.46.issue-5 |
[25] |
Liu Y, Wu H, Chen H, Liu Y, He J, Kang H, Sun Z, Pan G, Wang Q, Hu J, Zhou F, Zhou K, Zheng X, Ren Y, Chen L, Wang Y, Zhao Z, Lin Q, Wu F, Zhang X, Guo X, Cheng X, Jiang L, Wu C, Wang H, Wan J . A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat Biotechnol, 2015,33:301-305.
doi: 10.1038/nbt.3069 |
[26] | Feuillet C, Schachermayr G, Keller B . Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J, 2010,11:45-52. |
[27] |
Zhou H B, Li S F, Deng Z Y, Wang X P, Chen T, Zhang J S, Chen S Y, Ling H Q, Zhang A M, Wang D W, Zhang X Q . Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J, 2007,52:420-434.
doi: 10.1111/j.1365-313X.2007.03246.x |
[28] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25:402-408
doi: 10.1006/meth.2001.1262 |
[29] | Holzberg S, Brosio P, Gross C, Pogue G P . Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J, 2002,30:315-327. |
[30] | Zhu X L, Yang K, Wei X N, Zhang Q F, Rong W, Du L P, Ye X G, Qi L, Zhang Z Y . The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. J Exp Bot, 2015,66:6591-6603. |
[31] | 周淼平, 杨学明, 姚金保, 任丽娟, 张增艳, 马鸿翔 . 转Gastrodianin基因提高小麦赤霉病和纹枯病的抗性. 作物学报, 2012,38:1617-1624. |
Zhou M P, Yang X M, Yao J B, Ren L J, Zhang Z Y, Ma H X . Enhancement of resistance to Fusarium head blight and sharp eyespot in Gastrodianin transgenic wheat. Acta Agron Sin, 2012,38:1617-1624 (in Chinese with English abstract). | |
[32] |
Sanabria N, Goring D, Nurnberger T, Dubery I . Self/nonself perception and recognition mechanisms in plants: a comparison of self-incompatibility and innate immunity. New Phytologist, 2008,178:503-513.
doi: 10.1111/nph.2008.178.issue-3 |
[33] | Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A . The barley stem rust- resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA, 2002,99:9328-9333. |
[34] | Ahmed S M, Liu P, Xue Q, Ji C, Qi T, Guo J, Guo J, Kang Z . TaDIR1-2, a wheat ortholog of lipid transfer protein AtDIR1 contributes to negative regulation of wheat resistance against Puccinia striiformis f. sp. tritici. Front Plant Sci, 2017,8:521. |
[35] | Kage U, Karre S, Kushalappa A C, McCartney C . Identification and characterization of a fusarium head blight resistance gene TaACT in wheat QTL-2DL. Plant Biotechnol J, 2017,15:447-457. |
[36] |
Liu J, Zhang T, Jia J, Sun J . The wheat mediator subunit TaMED25 interacts with the transcription factor TaEIL1 to negatively regulate disease resistance against powdery mildew. Plant Physiol, 2016,170:1799-1816.
doi: 10.1104/pp.15.01784 |
[37] | Zou B, Ding Y, Liu H, Hua J . Silencing of copine genes confers common wheat enhanced resistance to powdery mildew. Mol Plant Pathol, 2017,19:1343-1352. |
[38] | Scofield S R, Huang L, Brandt A S, Gill B S . Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol, 2005,138:2165-2173. |
[39] | Zhu X, Lu C, Du L, Ye X, Liu X, Coules A, Zhang Z . The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis. Plant Biotechnol J, 2017,15:674-687. |
[40] |
Dong X . SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol, 1998,1:316-323.
doi: 10.1016/1369-5266(88)80053-0 |
[41] |
Glazebrook J . Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005,43:205-227
doi: 10.1146/annurev.phyto.43.040204.135923 |
[42] | Chen T, Xiao J, Xu J, Wan W, Qin B, Cao A, Chen W, Xing L, Du C, Gao X, Zhang S, Zhang R, Shen W, Wang H, Wang X . Two members of TaRLK family confer powdery mildew resistance in common wheat. BMC Plant Biol, 2016,16:27. |
[1] | 申芳嫡,洪彦涛,杜丽璞,徐惠君,马翎健,张增艳. 转细胞凋亡抑制基因OpIAP和p35增强小麦对纹枯病的抗性[J]. 作物学报, 2015, 41(10): 1490-1499. |
[2] | 王金凤,杜丽璞,李钊,黄素萍,叶兴国,冯斗,张增艳. 抗纹枯病、根腐病的转SN1基因小麦的获得与鉴定[J]. 作物学报, 2012, 38(05): 773-779. |
[3] | 赵丹, 赵继荣, 黄茜, 李宁, 黄占景, 张增艳. 利用BSMV-VIGS技术快速分析小麦TNBL1基因的抗黄矮病功能[J]. 作物学报, 2011, 37(11): 2106-2110. |
|