欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (10): 1485-1495.doi: 10.3724/SP.J.1006.2020.01013

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦类胡萝卜素合成途径关键基因Lcye功能分析

翟胜男1(), 郭军1, 刘成1, 李豪圣1, 宋健民1, 刘爱峰1, 曹新有1, 程敦公1, 李法计1, 何中虎2, 夏先春2,*(), 刘建军1,*()   

  1. 1 山东省农业科学院作物研究所, 山东济南 250100
    2 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2020-02-18 接受日期:2020-06-02 出版日期:2020-10-12 网络出版日期:2020-06-12
  • 通讯作者: 夏先春,刘建军
  • 作者简介:E-mail: zsn19870322@163.com, Tel: 0531-66659561
  • 基金资助:
    国家自然科学基金项目(31701420);山东省农业科学院农业科技创新工程(CXGC2018E01);中国科协青年人才托举工程(2017QNRC001);山东省农业良种工程项目(2019LGC001)

Functional analysis of Lcye gene involved in the carotenoid synthesis in common wheat

ZHAI Sheng-Nan1(), GUO Jun1, LIU Cheng1, LI Hao-Sheng1, SONG Jian-Min1, LIU Ai-Feng1, CAO Xin-You1, CHENG Dun-Gong1, LI Fa-Ji1, HE Zhong-Hu2, XIA Xian-Chun2,*(), LIU Jian-Jun1,*()   

  1. 1 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    2 Institute of Crop Sciences, Chnese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2020-02-18 Accepted:2020-06-02 Published:2020-10-12 Published online:2020-06-12
  • Contact: Xian-Chun XIA,Jian-Jun LIU
  • Supported by:
    National Natural Science Foundation of China(31701420);Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018E01);Young Elite Scientists Sponsorship Program by CAST(2017QNRC001);Agricultural Variety Improvement Project of Shandong Province(2019LGC001)

摘要:

小麦籽粒黄色素是面粉及面制品黄度形成的主要原因, 其主要成分是类胡萝卜素。ε-番茄红素环化酶(LCYE)是小麦类胡萝卜素生物合成途径的关键酶, 前人对其研究多集中于QTL定位、基因克隆和分子标记开发, 而基因功能和遗传调控机制尚不明确。本研究利用TILLING技术筛选EMS诱变群体, 对Lcye功能及遗传调控机制进行研究, 以期深入认识小麦籽粒黄色素含量形成的分子机制。在2491份M2代EMS诱变群体中共检测到21个Lcye基因的点突变, 包含6个错义突变, 2个同义突变和13个内含子突变, Lcye基因在该诱变群体中的突变频率为1/266.1 kb。PARSENP软件预测分析显示, M090815 (C2202T)和M091648 (G3284A)两个错义突变可能严重影响蛋白质功能。MEME分析结果表明, M090815和M092230 (G2195A)突变位点位于Lcye基因保守结构域内。6个错义突变植株与野生型杂交构建的F2代群体中, M090815突变位点显著降低籽粒黄色素含量, 证实该位点对LCYE功能具有重要影响。qRT-PCR (quantitative real-time PCR)分析也显示, M090815突变位点显著降低Lcye基因表达水平, 且Lcye-B1Lcye-D1基因表达降低趋势相似, 而Lcye-A1在花后14~28 d表现出补偿效应。本研究不仅验证Lcye基因功能, 也为面粉及其制品颜色性状改良提供了理论依据和种质资源。

关键词: EMS, TILLING, 面粉颜色, 黄色素含量, 遗传育种

Abstract:

Yellow pigment in wheat grains, mostly composed of carotenoids, is a main factor for the yellowness of flour and its end-used products. Lycopene epsilon cyclase (LCYE) is a key enzyme for the carotenoid biosynthesis pathway in wheat. Previous studies of Lcye gene mainly focused on QTL mapping, gene cloning, and molecular marker development, but its function and genetic regulatory mechanisms remained unclear. In the present study, in order to further understanding the molecular mechanism of yellow pigment formation in wheat grains, the function and genetic regulation of Lcye were studied by TILLING to screen the EMS-mutagenised population. A total of 21 Lcye mutations including six missense mutations, two synonymous mutations and 13 intron mutations were detected consisted from 2491 M2 EMS-mutagenised population. The mutation frequency of Lcye in the population was 1/266.1 kb. Two missense mutations (M090815 and M091648) were predicted to have severe effects on LCYE protein function based on PARSENP software. MEME analysis showed that the mutation sites of M090815 and M092230 were located on the conserved domain of Lcye gene. In F2 populations crossing by six missense mutants and the wild type, C2202T mutation in M090815 significantly reduced yellow pigment content in grains, indicating the mutation played an important effect on LCYE function. The quantitative real-time PCR (qRT-PCR) results also showed that the expression level of Lcye gene were significantly reduced, and the decrease trend of Lcye-B1 and Lcye-D1 expression level was similar during different seed developmental stages, while the expression level of Lcye-A1 exhibited a compensation effect at 14-28 days post anthesis. This study identified Lcye gene function, and provided germplasms and a theoretical basis for the improvement of flour color traits and end-used products.

Key words: EMS, TILLING, flour color, yellow pigment content, genetics and breeding

表1

利用TILLING技术筛选Lcye突变体的引物信息"

基因
Gene
名称
Name
上游引物序列
Forward primer (5′-3′)
下游引物序列
Reverse primer (5′-3′)
扩增长度
Length (bp)
Lcye-A1 A3F-A7R CCACAGTAGCAAAAATTAGTCA TGCTACATTTCACAGTGGTGAA 1450
Lcye-A1 A8F-A9R GGTTGAAAGATATCCGTACAAC TTTGGGTAACCGGAAAAAGGTT 978
Lcye-B1 B4F-B6R CACCAACCCTGCACAAAGTGCC GGAATATAAGACCACTCCTGAG 578
Lcye-D1 D2F-D5R GCTGAGAAGGTACATTCTATCA TTGAACTGGTGCACAAACAACA 437

表2

Lcye基因的qRT-PCR引物信息"

基因Gene 名称Name 序列Sequence (5'-3')
Lcye-all Lcye-all-F2 TGACCACYGAATATCCAGTTGC
Lcye-all-R6 AGTTTTCTTTGAGGAAACATGC
Lcye-A1 Lcye-A1-F7 GTTGCTGAGAAGATGCAACGAT
Lcye-A1-R7 CAAAGTATCTTGCGGTCCCTTT
Lcye-B1 Lcye-B1-F3 ATCTCCAGATGGACATCGAGTG
Lcye-B1-R3 TCCAACCTCATACTCTAGAAGT
Lcye-D1 Lcye-D1-F3 TTGGCCCTGATCTTCCATTC
Lcye-D1-R1 ATATACTACTCGATGTCCATCA
β-actin Actin-F CTGATCGCATGAGCAAAGAG
Actin-R CCACCGATCCAGACACTGTA

附表1

27个物种Lcye基因cDNA序列信息"

种名
Species name
GenBank登录号
GenBank accession number
种名
Species name
GenBank登录号
GenBank accession number
拟南芥Arabidopsis thaliana NM_125085 小立碗藓Physcomitrella patens XM_001753846
二穗短柄草Brachypodium distachyon XM_003569209 碧桃Prunus persica XM_007203578
大白菜Brassica rapa XM_009133907 蓖麻Ricinus communis XM_002514090
荠菜Capsella rubella XM_006280236 谷子Setaria italica XM_004969360
莱茵衣藻Chlamydomonas reinhardtii XM_001696477 番茄Solanum lycopersicum EU533951
柑橘Citrus sinensis AY533827 马铃薯Solanum tuberosum XM_006353482
黄瓜Cucumis sativus XM_004157912 高粱Sorghum bicolor XM_002455793
草莓Fragaria vesca XM_004287534 可可Theobroma cacao XM_007012707
大豆Glycine max XM_003533727 普通小麦Triticum aestivum EU649785
大麦Hordeum vulgare AK371513 圆锥小麦Triticum turgidum GAKM01004311
亚麻Linum usitatissimum KC565894 乌拉尔图小麦Triticum urartu GAKL01018490
苹果Malus domestica XM_008389970 葡萄Vitis vinifera JQ319637
蒺藜苜蓿Medicago truncatula XM_003595195 玉米Zea mays EU924262
水稻Oryza sativa NM_001049945

表3

利用TILLING技术筛选获得Lcye突变体信息"

基因
Gene
突变体编号
Number of M2 plant
外显子/内含子
Exon/intron
核苷酸改变
Nucleotide change
密码子改变
Codon change
氨基酸改变
Amino acid change
基因型
Zygosity
Lcye-A1 M091034 Intron C1184T Hom
M091686 Intron C1243T Hom
M091772 Intron C1418T Hom
M092043 Intron C1478T Hom
M092852 Intron C3222T Hom
M090431 Intron C858T Het
M090631 Intron T1461C Het
M090897 Intron G1068A Hom
M091996 Intron G1575A Hom
M090147 Intron G3073A Hom
M091648 Exon G3284A GGA→GAA G392E Hom
M090201 Exon G3306A TTA→TTG L399= Hom
Lcye-B1 M091626 Intron G2406A Hom
Lcye-D1 M092404 Intron C2014T Het
M091884 Intron C2017T Het
M090945 Exon C2086T TAC→TAT Y214= Hom
M092089 Exon C2087T CTC→TTC L215F Hom
M091328 Exon C2121T CCT→CTT P226L Het
M090815 Exon C2202T TCT→TTT S253F Het
M092230 Exon G2195A GCA→ACA A251T Hom
M091075 Exon G2262A GGT→GAT G273D Hom

图1

Lcye突变位点分布图 黄色箭头代表外显子; 连线代表内含子。"

表4

突变位点对蛋白功能影响严重度预测"

基因
Gene
突变体编号
Number of M2 plant
核苷酸改变
Nucleotide change
氨基酸改变
Amino acid change
PSSM值
PSSM difference
SIFT值
SIFT score
Lcye-D1 M090815 C2202T S253F 26.9 0
Lcye-A1 M091648 G3284A G392E 27.7 0

图2

突变体M090815的F2群体中不同基因型植株籽粒Lcye及其同源基因的相对表达量 * 和**分别代表0.05和0.01显著水平的差异。Hom: 纯合突变型; Het: 杂合突变型; WT: 野生型。"

图3

突变体M090815的F2群体中不同基因型植株籽粒黄色素含量 * 代表0.05显著水平的差异。Hom: 纯合突变型; Het: 杂合突变型; WT: 野生型。"

图4

Lcye功能结构域预测"

[1] Mares D J, Campbell A W. Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res, 2001,52:1297-1309.
doi: 10.1071/AR01048
[2] Adom K K, Sorrells M E, Liu R H. Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem, 2003,51:7825-7834.
doi: 10.1021/jf030404l pmid: 14664553
[3] Fratianni A, Irano M, Panfili G, Acquistucci R. Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimeter measurements. J Agric Food Chem, 2005,53:2373-2378.
doi: 10.1021/jf040351n pmid: 15796565
[4] Cong L, Wang C, Li Z Q, Chen L, Yang G X, Wang Y S, He G Y. cDNA cloning and expression analysis of wheat (Triticum aestivum L.) phytoene and ζ-carotene desaturase genes. Mol Biol Rep, 2010,37:3351-3361.
doi: 10.1007/s11033-009-9922-7
[5] 李文爽, 夏先春, 何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法. 作物学报, 2016,42:706-713.
doi: 10.3724/SP.J.1006.2016.00706
Li W S, Xia X C, He Z H. Establishment of Ultra performance liquid chromatography (UPLC) protocol for analyzing carotenoids in common wheat. Acta Agron Sin, 2016,42:706-713 (in Chinese with English abstract).
[6] Cazzonelli C I, Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci, 2010,15:266-274.
doi: 10.1016/j.tplants.2010.02.003 pmid: 20303820
[7] Zhu C F, Bai C, Sanahuja G, Yuan D W, Farré G, Naqvi S, Shi L X, Capell T, Christou P. The regulation of carotenoid pigmentation in flowers. Arch Biochem Biophys, 2010,504:132-141.
doi: 10.1016/j.abb.2010.07.028 pmid: 20688043
[8] Howitt C A, Cavanagh C R, Bowerman A F, Cazzonelli C, Rampling L, Mimica J L, Pogson B J. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomic, 2009,9:363-376.
doi: 10.1007/s10142-009-0121-3
[9] 董长海. 普通小麦籽粒黄色素含量相关基因的克隆与功能标记开发. 河北农业大学硕士学位论文, 河北保定, 2011. pp 32-33.
Dong C H. Cloning of Genes Associated with Grain Yellow Pigment Content in Common Wheat and Development of Functional Markers. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2011. pp 32-33 (in Chinese with English abstract).
[10] Crawford A C, Francki M G. Lycopene-e-cyclase (e-LCY3A) is functionally associated with quantitative trait loci for flour b* colour on chromosome 3A in wheat (Triticum aestivum L.). Mol Breed, 2013,31:737-741.
doi: 10.1007/s11032-012-9812-x
[11] Till B J, Clbert T, Tompa R, Enns L C, Codomo C A, Johnson J E, Reynolds S H, Henikoff J G, Greene E A, Steine M N, Comai L, Henkoff S. High-throughput TILLING for functional genomics. In: Grotewold E ed. Plant Functional Genomics. Totowa N J, USA: Humana Press, 2003. pp 205-220.
[12] 闫智慧, 郭会君, 徐荣旗, 刘录祥. TILLING技术的发展及其在不同植物中的应用. 核农学报, 2014,28:224-233.
doi: 10.11869/j.issn.100-8551.2014.02.0224
Yan Z H, Guo H J, Xu R Q, Liu L X. Development of TILLING technology and its application in plants. J Nucl Agric Sci, 2014,28:224-233 (in Chinese with English abstract).
[13] 侯彩玲, 陈龙, 刘晓萌, 赵锦慧, 卢龙斗. TILLING技术在作物品质改良中的应用. 种子, 2008,27(11):77-80.
Hou C L, Chen L, Liu X M, Zhao J H, Lu L D. Application of TILLING technology on the improvement of crop quality. Seed, 2008,27(11):77-80 (in Chinese).
[14] 韩宁, 唐丹, 刘文, 闫丽, 胡晓君. Tilling技术及其在小麦中的应用研究进展. 麦类作物学报, 2013,33:1054-1057.
doi: 10.7606/j.issn.1009-1041.2013.05.036
Han N, Tang D, Liu W, Yan L, Hu X J. Development of targeting induced local lesions in genomes and its application in wheat (Triticum aestivum L.). J Triticeae Crops, 2013,33:1054-1057 (in Chinese with English abstract).
[15] 陈锋, 徐艳花, 董中东, 许海霞, 程西永, 詹克慧, 崔党群. TILLING 技术的形成和发展及其在麦类作物中的应用. 麦类作物学报, 2010,30:178-182.
doi: 10.7606/j.issn.1009-1041.2010.01.035
Chen F, Xu Y H, Dong Z D, Xu H X, Cheng X Y, Zhan K H, Cui D Q. Development of targeting induced local lesion in genomes and its application in Triticeae crops. J Triticeae Crops, 2010,30:178-182 (in Chinese with English abstract).
[16] 潘娜, 郭会君, 赵世荣, 王广金, 刘录祥. TILLING技术在作物突变研究中的应用现状与前景. 植物遗传资源学报, 2011,12:581-587.
Pan N, Guo H J, Zhao S R, Wang G J, Liu L X. Current status and perspectives of TILLING technique for crop mutagenesis research. J Plant Genet Resour, 2011,12:581-587 (in Chinese with English abstract).
[17] Zhai S N, Li G Y, Sun Y W, Song J M, Li J H, Song G Q, Li Y L, Ling H Q, He Z H, Xia X C. Genetic analysis of phytoene synthase 1 (Psy1) gene function and regulation in common wheat. BMC Plant Biol, 2016,16:228.
doi: 10.1186/s12870-016-0916-z pmid: 27769185
[18] Slade A J, Fuerstenberg S I, Loeffler D, Steine M N, Facciontti D. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol, 2005,23:75-81.
doi: 10.1038/nbt1043 pmid: 15580263
[19] Till B J, Zerr T, Comai L, Henikoff S. A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc, 2006,1:2465-2477.
doi: 10.1038/nprot.2006.329 pmid: 17406493
[20] Doyle J J, Doyle J L. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull, 1987,19:11-15.
[21] Ng P C, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res, 2003,31:3812-3814.
doi: 10.1093/nar/gkg509 pmid: 12824425
[22] Taylor N E, Greene E A. PARSESNP: a tool for the analysis of nucleotide polymorphisms. Nucleic Acids Res, 2003,31:3808-3811.
doi: 10.1093/nar/gkg574 pmid: 12824424
[23] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[24] Hornero Mendez D, de Guevara R G L, Minguez Mosquera M I. Carotenoid biosynthesis changes in five red pepper (Capsicum annuum L.) cultivars during ripening. Cultivar selection for breeding. J Agric Food Chem, 2000,48:3857-3864.
doi: 10.1021/jf991020r pmid: 10995282
[25] Ronen G, Carmel Goren L, Zamir D, Hirschberg J. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA, 2000,97:11102-11107.
doi: 10.1073/pnas.190177497 pmid: 10995464
[26] Richaud D, Stange C, Gadaleta A, Colasuonno P, Parada R, Schwember A R. Identification of Lycopene epsilon cyclase (Lcye) gene mutants to potentially increase β-carotene content in durum wheat (Triticum turgidum L. ssp. durum) through TILLING. PLoS One, 2018,13:e0208948.
doi: 10.1371/journal.pone.0208948 pmid: 30532162
[27] Gilchrist E J, Haughn G W. TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol, 2005,8:211-215.
doi: 10.1016/j.pbi.2005.01.004 pmid: 15753003
[28] Till B J, Datta S, Jankowicz Cieslak J. TILLING: the Next Generation. In: Varshney R, Pandey M, Chitikineni A, eds. Plant Genetics and Molecular Biology. Advances in Biochemical Engineering/Biotechnology, Vol. 164. Springer, Cham, 2018. pp 139-160. https://doi.org/10.1007/10_2017_54.
[29] Till B J, Cooper J, Tai T H, Colowit P, Greene E A, Henikoff S, Comai L. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol, 2007,7:19.
doi: 10.1186/1471-2229-7-19 pmid: 17428339
[30] Till B J, Reynolds S H, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo C A, Enns L C, Odden A R, Greene E A, Comai L, Henikoff S. Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol, 2004,4:12.
doi: 10.1186/1471-2229-4-12 pmid: 15282033
[31] Acevedo Garcia J, Spencer D, Thieron H, Reinstädler A, Hammond Kosack K, Phillips A L, Panstruga R. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol J, 2017,15:367-378.
doi: 10.1111/pbi.12631 pmid: 27565953
[32] Kim H, Yoon M R, Chun A, Tai T H. Identification of novel mutations in the rice starch branching enzyme I gene via TILLING by sequencing. Euphytica, 2018,214:12.
doi: 10.1007/s10681-017-2093-z
[33] Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N. TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes, 2009,2:258.
doi: 10.1186/1756-0500-2-258 pmid: 20017921
[34] Nida H, Blum S, Zielinski D, Srivastava D A, Elbaum R, Xin Z, Erlich Y, Fridman E, Shental N. Highly efficient de novo mutant identification in a Sorghum bicolor TILLING population using the ComSeq approach. Plant J, 2016,86:349-359.
doi: 10.1111/tpj.13161 pmid: 26959378
[35] Colbert T, Till B J, Tompa R, Reynolds S, Steine M N, Yeung A T, McCallum C M, Comai L, Henikoff S. High-throughout screening for induced point mutations. Plant Physiol, 2001,126:480.
doi: 10.1104/pp.126.2.480 pmid: 11402178
[36] Dong C, Dalton Morgan J, Vincent K, Sharp P. A modified TILLING method for wheat breeding. Plant Genome, 2009,2:39-47.
doi: 10.3835/plantgenome2008.10.0012
[37] Uauy C, Paraiso F, Colasuonno P, Tran R K, Tsai H, Berardi S, Comai L, Dubcovsky J. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol, 2009,9:115-128.
doi: 10.1186/1471-2229-9-115 pmid: 19712486
[38] Colasuonno P, Incerti O, Lozito M L, Simeone R, Gadaleta A, Blanco A. DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population. BMC Genet, 2016,17:43.
doi: 10.1186/s12863-016-0350-0 pmid: 26884094
[39] Slade A J, McGuire C, Loeffler D, Mullenberg J, Skinner W, Fazio G, Holm A, Brandt K M, Steine M N, Goodstal J F, Knauf V C. Development of high amylose wheat through TILLING. BMC Plant Biol, 2012,12:69-85.
doi: 10.1186/1471-2229-12-69 pmid: 22584013
[40] 何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011,37:202-215.
doi: 10.3724/SP.J.1006.2011.00202
He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011,37:202-215 (in Chinese with English abstract).
[41] Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014,33:1-14.
doi: 10.1007/s11032-013-9917-x
[42] Shannon G J, Nguyen H T. Development of SNP genotyping assays for seed composition traits in soybean. Int J Plant Genomics, 2017,2017:6572969.
doi: 10.1155/2017/6572969 pmid: 28630621
[1] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[2] 邹华文,王道杰,边秀秀,商海红,杨新泉. 近15年国家自然科学基金稻、麦类作物遗传育种领域项目申请情况分析[J]. 作物学报, 2015, 41(05): 820-828.
[3] 朱明, 魏伟, 陈明, 张宪省, 徐兆师, 李连城, 马有志. 一种新的快速鉴定蛋白与靶DNA结合位点的方法[J]. 作物学报, 2011, 37(12): 2167-2172.
[4] 吴慧敏, 黄立钰, 潘雅娇, 靳鹏, 傅彬英. 水稻基因OsASIE1抗逆功能分析[J]. 作物学报, 2011, 37(10): 1771-1778.
[5] 韩锁义;张恒友;杨玛丽;赵团结;盖钧镒;喻德跃. 大豆“南农86-4”突变体筛选及突变体库的构建[J]. 作物学报, 2007, 33(12): 2059-2062.
[6] 叶俊;吴建国;杜婧;郑希;石春海. 水稻“9311”突变体的筛选和突变体库的构建[J]. 作物学报, 2006, 32(10): 1525-1529.
[7] 张立平;阎俊;夏先春;何中虎;Mark W Sutherland. 普通小麦籽粒黄色素含量的QTL分析[J]. 作物学报, 2006, 32(01): 41-45.
[8] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235-239.
[9] 刘文轩;陈佩度;刘大钧. 一个普通小麦-大赖草易位系T01的选育与鉴定[J]. 作物学报, 2000, 26(03): 305-309.
[10] 赵永亮;宋同明;马惠平. 利用花粉化学诱变快速创造特用玉米新种质[J]. 作物学报, 1999, 25(02): 157-161.
[11] 陆卫;贾敬芬. 谷子胚性愈伤组织耐盐系的选择及其生理生化特性分析[J]. 作物学报, 1994, 20(02): 241-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!