作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1439-1444.doi: 10.3724/SP.J.1006.2009.01439
王会伟,李洪杰,朱振东,武小菲,王晓鸣*
WANG Hui-Wei,LI Hong-Jie,ZHU Zhen-Dong,WU Xiao-Fei,WANG Xiao-Ming*
摘要:
利用cDNA-AFLP技术和5' RACE技术在玉米自交系黄早四Ht2上分离并克隆了QM(编码核糖体蛋白L10)同源基因(命名为ZmQM)。其cDNA全长为967 bp, 开放阅读框为738 bp,。该基因编码245个氨基酸的ZmQM蛋白,分子量为27.78 kD, 等电点(pI)为10.69, 预测含蛋白酶C磷酸化位点、N-酰基化位点和酰胺化等位点。玉米ZmQM蛋白与包括人类等l3个物种QM蛋白的同源性比较发现, 氨基酸序列相似性为66%~92%。RT-PCR分析表明, 在接种玉米大斑病菌(Exserohilum turcicum) 1号小种12 h后, 黄早四Ht2中ZmQM基因表达量较黄早四中明显上调,推测ZmQM基因可能参与黄早四Ht2对玉米大斑病菌1号小种的抗性反应。
[1] Hooker A L. A new type of resistance in corn to Helminthosporium turcicum in seedling corn.Plant Dis Rep, 1961, 45: 780-781[2] Hooker A L. A second major gene locus in corn for chlorotic-lesion resistance to Helminthosporium turcicum 1. Crop Sci, 1977, 17: 132-135[3] Hooker A L. Resistance to Helminthosporium turcicum from Tripsacum floridanum incorporated into corn. Maize Genet Coop Newsl, 1981, 55: 87-88[4] Gevers O H A. A new major gene for resistance to Helminthosporium turcicum leaf blight of maize. Plant Dis Rep, 1975, 59: 296-299[5] Robbins Jr W A, Warren H L. Inheritance of resistance to Exserohilum turcicum in PI 209135 “Mayorbela” variety of maize. Maydica, 1993, 38: 209-213[6] Juliana B O, Marco A G, Isaias O G, Luis E. New resistance gene in the Zea mays- Exserohilum turcicum pathosystem. Genet Mol Biol, 2005, 28, 435-439[7] Carson M L. A new gene in maize conferring the“chlortic halo” reaction to infection by Exserohilum turcicum. Plant Dis, 1995, 79: 717-720[8] Wang Y-P(王玉萍), Wang X-M(王晓鸣), Ma Q(马青). Races of Exserohihun turcicum, causal agent of northern leaf blight in China. J Maize Sci(玉米科学), 2007, 15(2): 123-126[9] Bachem C W B, van der Hoeven R S, de Bruijn S M, Vreugdenhil D, Zabeau M, Visser R G F. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J, 1996, 9: 745-753[10] Rodo A P, Brugiere N, Vankova R, Malbeck J, Olson J M, Haines S C, Martin R C, Habben J E, Mok D W S, Mok M C. Over-expression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation. J Exp Bot, 2008, 59: 2673-2686[11] Farmer A A, Loftus T M, Mills A A, Sato K Y, Neill J D, Tron T, Yang M, Trumpower B L, Stanbridge E J. Extreme evolutionary conservation of QM, a novel c-Jun associated transcription factor. Human Mol Genet, 3: 723-728 [12] Chan Y L, Diaz J J, Denoroy L, Madjar J J, Wool I G. The primary structure of rat ribosomal protein L10: Relationship to a Jun-binding protein and to a putative Wilms’ tumor suppressor. Biochem Biophys Res Commun, 1996, 225: 952-956 [13] Wool I G. Extra ribosomal functions of ribosomal proteins. Trends Biochem Sci, 1996, 21: 164-165 [14] Rivera-Madrid R, Marinho P, Chartier Y, Meyer Y. Nucleotide sequence of an Arabidopsis thaliana cDNA clone encoding a homolog to a suppressor of Wilms’ tumor. Plant Physiol, 1993, 102: 329-330 [15] Chen C, Wanduragala S, Becker D F, Dickman M B. Tomato QM-like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels. Appl Environ Microbiol, 2006, 72: 4001-4006 [16] Singh K, Paul A, Kumar S, Ahuja P S. Cloning and differential expression of QM like protein homologue from tea [Camellia sinensis (L.) O. Kuntze]. Mol Biol Rep, May 4, 2008, (Online) DOI: 10.1007/s11033-008-9264-x [17] Rocha C S, Santos A A, Machado J P B, Fontes E P B. The ribosomal protein L10/QM-like protein is a component of the NIK-mediated antiviral signaling. Virology, 2008, 380: 165-169 [18] Berquist R R, Masias O R. Physiologic specialization in Thrichomes-tasphaeria turcica f. sp. zeae and T. turcica f. sp. sorghi in Hawaii. Phytopathology, 1974, 64: 645-649 |
No related articles found! |
|