欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (10): 1662-1666.

• 研究论文 • 上一篇    下一篇

利用神经网络提取棉花叶片数字图像氮素含量的初步研究

李小正1 ,2, 谢瑞芝1 , 王克如1,3 , 白中英2 , 李少昆1,3,* , 王方勇3 , 高世菊1   

  1. 1 中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程,北京100081;2 北京邮电大学,北京100876;3 石河子大学绿洲生态农业重点试验室/石河子大学新疆作物高产研究中心,新疆石河子832000
  • 收稿日期:2006-12-27 修回日期:1900-01-01 出版日期:2007-10-12 网络出版日期:2007-10-12
  • 通讯作者: 李少昆

Acquiring Nitrogen Quantity in Digital Image of Cotton Leaf by Artificial Neutral Network Model

LI Xiao-Zheng 1,2, XIE Rui-Zhi1, WANG Ke-Ru 1,3, BAI Zhong-Ying 2, LI Shao-Kun 1,3,* , WANG Fang-Yong 3, GAO Shi-Ju1   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/The National Key Facilities for Crop Genetic Resources and Improvement, Beijing 100081; 2 Beijing Posts and Telecommunications University, Beijing 100876; 3 Key Laboratory of Oasis Ecology Agriculture of Xinjiang Bingtuan/Research Center of Xinjiang Crop High-Yield, Shihezi University, Shihezi 832000, Xinjiang, China
  • Received:2006-12-27 Revised:1900-01-01 Published:2007-10-12 Published online:2007-10-12
  • Contact: LI Shao-Kun

摘要:

选取6种输入向量组合,利用线性网络、BP网络以及径向基网络等3种神经网络模型进行比较研究,筛选最适宜网络模型和最佳输入组合,建立叶片数字图像彩色信息和叶片氮含量的关系模型,探索利用神经网络技术获取叶片数字图像信息的方法。结果表明,径向基网络在利用数字图像(B,H,G-R,G/R)指标作为网络输入向量时,能够实现获取棉花叶片数字图像氮含量的目标。径向基网络训练的180组样本的训练精度均达到极显著水平(r = 0.9022**),30组测试样本的预测值与实测值也达到极显著相关(r = 0.8674**),径向基网络和(B,H,G-R,G/R)向量是一种适合本研究的数学模型。对利用神经网络提取棉花叶片数字图像氮含量技术的初步探索,拓展了神经网络和数字图像技术在农业生产中的应用。

关键词: 数字图像, 线性网络, BP神经网络, 径向基网络, 氮素含量

Abstract:

Artificial Neutral Network (ANN) has some important features, such as self-study, acceptance-error, building math model rapidly. ANN has been widely used in many fields, some people have made a lot of findings in agriculture by ANN. The technology of digital image processing is also very important for agriculture, and people have found there are some relation between color information and the nitrogen quantity for maize, tomato. But nobody use ANN to found the relation. The objective of this research is to process the digital image of cotton leaf, and use ANN to select the best math model and input vectors for establishing the relation between the color information and nitrogen quantity of cotton leaf. So we can use the advantages of ANN and the technology of digital image processing, and select the most suitable result for this research automatically. We select three ANN models (line on network, BP network and radical basis function (RBF) network) and six pieces of input vectors for this research, and train each model with color information from 180 pieces of digital images, and use the better to forecast nitrogen quantity of 30 pieces of images. The results showed that linear network was not fit this research and the relation between color information and nitrogen quantity was not fit the linear models, and RBF network was better for this research than BP network. RBF network had a lot of advantages in calculating the quantity of nitrogen using vector (B, H, G-R, G/R). The precision of training result was very marked, with r = 0.9022**, and the precision of forecast was high, with r = 0.8674** by this ANN forecast using the 30 pieces of cotton digital image. Because of local smallest, simple framework, and rapid training, RBF network can get the nitrogen quantity in plant by digital image information, and enhance the application of ANN in agriculture.

Key words: Digital image, Line network, BP network, RBF (radical basis function) network, Nitrogen quantity

[1] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[2] 陈兵,韩焕勇,王方永,刘政,邓福军,林海,余渝,李少昆,王克如,肖春华. 利用光谱红边参数监测黄萎病棉叶叶绿素和氮素含量[J]. 作物学报, 2013, 39(02): 319-329.
[3] 肖春华;李少昆;王克如;卢艳丽;谢瑞芝;高世菊. 基于多视角反射光谱的冬小麦冠层叶片氮素营养监测研究[J]. 作物学报, 2007, 33(07): 1141-1145.
[4] 单成钢;廖树华 ;龚宇;梁振兴;王璞. 应用数字图像技术估测冬小麦冠层生物量垂直分布特征的研究[J]. 作物学报, 2007, 33(03): 419-424.
[5] 赵万春;董剑;高翔;张改生. 施氮对杂交小麦不同器官氮素积累与转运及其杂种优势的影响[J]. 作物学报, 2007, 33(01): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!