欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (12): 2251-2260.doi: 10.3724/SP.J.1006.2011.02251

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻单胚多芽突变体多芽发生的胚胎学基础

郭静玉1,陈志雄1,**,杨秉耀2,陈新芬2,刘向东1,*,卢永根1,*   

  1. 1亚热带农业生物资源保护与利用国家重点实验室, 广东广州 510642; 2华南农业大学电镜室, 广东广州 510642
  • 收稿日期:2011-05-05 修回日期:2011-07-15 出版日期:2011-12-12 网络出版日期:2011-09-06
  • 通讯作者: 刘向东, E-mail: xdliu@scau.edu.cn; 卢永根, E-mail: yglu@scau.edu.cn
  • 作者简介:郭静玉, E-mail: jy.guo2010@hotmail.com, 陈志雄, E-mail: chenzx@scau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30971756),国家公益性行业(农业)科研专项(201003021)和广东省自然科学重点基金项目(10251064201000001)资助。

Differentiation of Multiple Shoot Apical Meristems in Mutant Rice with One Embryo Causing Multiple Plumuples

GUO Jing-Yu1,CHEN Zhi-Xiong1,**, YANG Bing-Yao2, CHEN Xin-Fen2, LIU Xiang-Dong1,*,LU Yong-Gen1,*   

  1. 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agriculture University, Guangzhou 510642, China;
    2 Electronic Microscope Laboratory, South China Agricultural University, Guangzhou 510642, China
  • Received:2011-05-05 Revised:2011-07-15 Published:2011-12-12 Published online:2011-09-06
  • Contact: 刘向东, E-mail: xdliu@scau.edu.cn; 卢永根, E-mail: yglu@scau.edu.cn
  • About author:郭静玉, E-mail: jy.guo2010@hotmail.com, 陈志雄, E-mail: chenzx@scau.edu.cn

摘要: 植物胚胎发育过程中茎端分生组织的正常形成与发育是产生叶片、侧芽和茎的重要前提。水稻突变体4001的籽粒萌发时产生多个芽,为重要的茎端分生组织分化异常突变体。利用整体染色透明激光扫描共聚焦显微术(WE-CLSM)、塑料半薄切片术和扫描电子显微镜观察表明,突变体4001的胚囊结构和双受精过程正常,但胚胎发育和分化迟于野生型水稻,胚胎分化产生多个茎端分生组织,且位置异常。多个茎端分生组织的分化是4001多芽的胚胎学基础,与其相关的基因在调控水稻茎端分生组织分化的时间、未分化细胞数目以及背腹轴性建立等方面起着重要的作用。

关键词: 水稻 (Oryza sativa L.), 茎端分生组织, 胚胎发育

Abstract: The proper formation and development of shoot apical meristem during plant embryonic development is prerequisite to generate leaves, buds and stems. Rice (Oryza sativa L.) mutant line 4001 produces multiple plumules in one seed and is considered as an important mutant with abnormal differentiation of shoot apical meristem. While the embryonic basis of the mutant with multiple plumules is yet unknown. To elucidate the cytological basis, mature embryo sac structure and process of double fertilization were observed with whole-mount eosin B-staining confocal laser scanning microscopy (WE-CLSM), semi-thin plastic sections and scanning electron microscopy (SEM). The observation by WE-CLSM showed that both embryo sac structure and double fertilization process were normal in the mutant line, suggesting that the abnormal traits were related to the later embryonic development. By semi-thin plastic sections and SEM, the retardation of embryonic development and the formation of multiple shoot apical meristems (SAM) under abnormal orientation were observed in one embryo of the mutant line, compared with those of wild-type rice. At three days after pollination, the process of embryonic development was slower in the mutant line than in the wild type rice. The abnormality included the diverse number of SAMs under irregular orientation and the changes of dorsal-ventral axis. Two separate plumules, two plumules in one coleoptile and two connected plumules with one separate plumule were also observed in the mutant line 4001. It was concluded that differentiation of multiple SAMs and the the changes of dorsal-ventral axis in one embryo contribute to the multiple plumuples in the mutant line. It was inferred that mutant trait-related genes might play important roles in the regulations of the timing of shoot apical meristem differentiation, the number of undifferentiated cells and the establishment of dorsal-ventral axis.

Key words: Rice (Oryza sativa L.), Shoot apical meristem, Embryonic development

[1]Wu X-Y(吴先军), Zhou K-D(周开达). Embryogeny for poly-embryo strain 9003 in rice (Oryza sativa L.). J Sichuan Univ (Nat Sci Edn) (四川大学学报?自然科学版), 2003, 40(5): 966–969 (in Chinese with English abstract)
[2]Hirochika H, Guiderdoni E, An G, Hsing Y I, Eun M Y, Han C D, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, Sundaresan V, Leung H. Rice mutant resources for gene discovery. Plant Mol Biol, 2004, 54: 325–334
[3]Liu X-D(刘向东), Chen Q-F(陈启锋), Li W-M(李维明). Polyembryony in crops. J Fujian Agric Coll (福建农学院学报), 1992, 21(2): 147–156 (in Chinese with English abstract)
[4]Huang R-H(黄日辉). Preliminary report on rice polyembryony. Guangxi Agric Sci (广西农业科学), 1988, (2): 10–14 (in Chinese)
[5]Deng H-D(邓鸿德). Identification of 45 two-embryo seedling of rice germplasm in Hunan Hybrid Rice Research Centre. Hybrid Rice (杂交水稻), 1990, (6): 28 (in Chinese)
[6]Guo M-Q(郭名奇). Discovery and research progress of two-embryo seedling of rice. Hybrid Rice (杂交水稻), 1990, (2): 26–27 (in Chinese)
[7]Liu X-D(刘向东), Chen Q-F(陈启锋), Li W-M(李维明), Ding F(丁菲). Preliminary studies on polyembryonic seedlings in rice: II. The study of isozyme. J Fujian Agric Coll (福建农学院学报), 1991, 20(3): 248–253 (in Chinese with English abstract)
[8]Liu Y-S(刘永胜), Sun J-S(孙敬三), Wang F-X(王伏雄), Zhou K-D(周开达). Cytoembryological studies on polyembryonic line SB1 of Oryza sativa: polyembryony and its origin. Acta Bot Sin (植物学报), 1994, 36(11): 821–827 (in Chinese with English abstract)
[9]Liu X-D(刘向东), Lu Y-G(卢永根), Xu X-B(徐雪宾), Xu S-X(徐是雄). Study on the structure and genetic polymorphism of embryo sac in polyembryonic rice strain APIV. Acta Bot Sin (植物学报), 1996, 38(8): 594–598 (in Chinese with English abstract)
[10]Liu X-D(刘向东), Lu Y-G(卢永根), Xu X-B(徐雪宾), Xu S-X(徐是雄). Fertilization of different types of embryo sacs and its embryo formation in in polyembryonic rice strain APIV. Acta Bot Sin (植物学报), 1997, 39(3): 214–217 (in Chinese with English abstract)
[11]Wu X-J(吴先军), Zhou K-D(周开达). Embryogeny for poly-embryo Sstrain 9003 in rice (Oryza sativa L.). J Sichuan Univ (Nat Sci Edn) (四川大学学报•自然科学版), 2003, 40(5): 966–969 (in Chinese with English abstract)
[12]Mu X-J(母锡金), Chen Z-J(陈祖铿), Wang F-X(王伏雄). Morphological observation on “polyembryonic seedling” of rice. Acta Bot Sin (植物学报), 1994, 36(11): 838–841 (in Chinese with English abstract)
[13]Mu X-J(母锡金), Shi G-C(时光春), Zhu Z-Q(朱至清), Cai X(蔡雪), Ni P-C(倪丕冲). Embryological observation on the apomictic rice ApIII (SHUANG 13). Acta Bot Sin (植物学报), 1996, 38(12): 969–971 (in Chinese with English abstract)
[14]He T(何涛), Guo X-X(郭学兴), Zeng X-Y(曾秀英), Liu G(刘刚), Luo K(罗科), Tan W(谭薇), Han S-H(韩思怀). Studies on the anatomy and embryology of rice C001. Southwest China J Agric Sci (西南农业学报), 1996, 9(2): 20–23 (in Chinese)
[15]Sheridan W F, Clark J K. Mutational analysis of morphogenesis of maize embryo. Plant J, 1993, 3: 347–358
[16]Hong, S K, Aoki T, Kitano H, Satoh H, Nagato Y. Phenotypic diversity of 188 rice embryo mutants. Dev Genet, 1995, 16: 298–310
[17]Satoh N, Hong S K, Nishimura A, Matsuoka M, Kitano H, Nagato Y. Initiation of shoot apical meristem in rice: characterization of four SHOOTLESS genes. Development, 1999, 126: 3629–3636
[18]Kinae T, Hong S K, Nagato Y. Apical displacement 1 gene regulates apical-basal pattern formation in rice embryo. Plant Sci, 2005, 168: 1345–1351
[19]Yang X C, Hwa C M. Genetic and physiological characterization of the OsCem mutant in rice: formation of connected embryos with multiple plumules or multiple radicles. Heredity, 2008, 101: 239–246
[20]Zeng Y X, Hu C Y, Lu Y G, Li J Q, Liu X D. Diversity of abnormal embryo sacs in indica/japonica hybrids in rice demonstrated by confocal microscopy of ovaries. Plant Breed, 2007, 126: 574–580
[21]Wang L(王兰), Liu X-D(刘向东), Lu Y-G(卢永根), Xu X-B(徐雪宾), Zee S-Y(徐是雄). Endosperm development in autotetraploid rice: the fusion of polar nuclei and the formation of endosperm cell wall. Chin J Rice Sci (中国水稻科学), 2004, 18(4):281–289 (in Chinese with English abstract)
[22]Feng J H, Xu X B, Liu X D, Zhang C L, Liang X L, Wu W C. Embryogenesis, germination, structure and cotyledon dimorphism of Zea mays embryo. Acta Bot Sin, 2003, 45: 712–723
[23]Xiao Y(肖祎). Embryonic and Genetic Study on Twin-Seedling in Rice (胚胎学和遗传学结合研究水稻双苗的遗传). Chengdu: Sichuan Agricultural University, 2006. pp 29–36 (in Chinese)
[24]Endrizzi K, Moussian B, Heacker A, Levin J Z, Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 1996, 10: 967–979
[25]Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. Cell, 1996, 85: 159–170
[26]Satoh N, Itoh J, Nagato Y. The SHOOTLESS2 and SHOOTLESS1 genes are involved in both initiation and maintenance of the shoot apical meristem through regulating the number of indeterminate cells. Genetics, 2003, 164: 335–346
[27]Mayer U, Büttner G, Jürgens G. Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development, 1993, 117: 149–162
[28]Hardtke C, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J, 1998, 17(5): 1405–1411
[29]Baud S, Bellec Y, Miquel M, Bellini C, Caboche M, Lepiniec L, Faure J D, Rochat C. GURKE and pasticcino3 mutants affected in embryo development are impaired in acetyI-CoA carboxylase. EMBO Rep, 2004, 5: 515–520
[30]Kepinski S. Integrating hormone signaling and patterning mechanisms in plant development. Curr Opin Plant Biol, 2006, 9(5): 28–34
[31]Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B. An auxin-dependent distal organizater of pattern and polarity in the Arabidopsis root. Cell, 1999, 99: 463–474
[32]Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local, efflux-dependent auxin gradient as a common module for plant organ formation. Cell, 2003, 115: 591–602
[33]Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C. Regulation of phyllotaxis by polar auxin transport. Nature, 2003, 426: 255–260
[34]Friml J, Vieten A, Sauer M, Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 2003, 426: 147–153
[35]Weijers D, Jürgens G. Auxin and embryo axis formation: the ends in sight? Curr Opin Plant Biol, 2005, 8: 32–37
[36]Fischer C, Speth V, Fleig-Eberenz S, Neuhaus G. Induction of zygotic polyembryos in wheat: influence of auxin polar transport. Plant Cell, 1997, 9: 1767–1780
[1] 张新友,徐静,汤丰收,董文召,臧秀旺,张忠信. 花生种间杂种胚胎发育及内源激素变化[J]. 作物学报, 2013, 39(06): 1127-1133.
[2] 焦改丽;孟钊红;聂安全;南芝润;张换样;李俊峰;王娇娟. 花椰菜花叶病毒(CaMV)35S启动子在转基因棉花中的表达[J]. 作物学报, 2004, 30(11): 1135-1139.
[3] 李常保;刘艳华;杜长青;孔令让. 普通小麦与粗山羊草正反交育性机理的胚胎学研究[J]. 作物学报, 2002, 28(02): 170-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!